• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 30, Pages: 3051-3058

Original Article

Improvement of the compression ratio of vibratory signals by double pass DWHT

Received Date:14 June 2020, Accepted Date:10 July 2020, Published Date:19 August 2020


Background/Objectives: The vibratory signals delivered by rotating machines are very important in the maintenance of these machines. For maintenance purposes they are stored or transmitted. The storage and transmission of these signals pose problems of space and bandwidth. To solve this problem compression is a solution. Methods/Statistical analysis: In this work, we compress and decompress the vibration signals formed by variations of the amplitudes vibration of a ball bearing. We used an algorithm based on the Walsh-Hadamard Transform (WHT) in two passes. The coefficients obtained are coded according to Huffman’s coding. An evaluation of performances of this algorithm is made on the basis of the measurements of SNR, MFD,MSE, PRD and CR. Findings: Compression ratios are high when we consider that the reconstruction is almost perfect. Usually, compression methods by transformation have a nonzero reconstructed error. However, this bleaching of vibratory signals both in the temporal and frequency domain, followed by good quantization precision, allowed to cancel this error. In view of these qualitative and quantitative evaluation parameters of the method result, it can be said that the method gives very good results. Novelty/Applications: Improved of Compression Ratio of vibratory signals for maintenance purposes.

Keywords: WHT; compression; vibratory signals; storage; bandwidth; rotating machines


  1. Okassa AJO, Ngono JM, Ele P. Compression of the EMG Signals by Walsh-Hadamard Transform Associated with the Predictive Coding DPCM. International Journal of Signal System Control and Engineering Application. 2019;12(1):1–7. Available from: https://dx.doi.org/10.36478/ijssceapp.2019.1.7
  2. Kaur A, Kaur J. Comparision of Dct and Dwt of Image Compression Techniques. International Journal of Engineering Research and Development. 2012;4(1):45–52.
  3. Performance Evaluation of DWT Compared to DCT for Compression Biomedical Image. International Journal of Modern Education and Computer Science (IJMECS). 2014;4:9–15. Available from: https://doi.org/10.5815/ijmecs
  4. Gangwar RK, Kumar M, A.K J, Saxena R. Performance Analysis of Image Compression Using Fuzzy Logic Algorithm. Signal & Image Processing : An International Journal. 2014;5(2):73–80. Available from: https://dx.doi.org/10.5121/sipij.2014.5207
  5. Premanand B, Sheeba VS. Compressed encoding of vibration signals using extremum sampling. SN Applied Sciences. 2020;2(7):1261. Available from: https://dx.doi.org/10.1007/s42452-020-3076-6
  6. Narayan S, Milojevic S. Vipul Gupta “Combustion monitoring in engines using accelerometer signals”. Journal of Vibroengineering. 2019;21(6):1552–1563. Available from: https://doi.org/10.21595/jve.2019.20516
  7. Bazovsky I. Reliability Theory and Practice. Englewood Cliffs, New Jersey. Prentice-Hall. 1961.
  8. Jardine AKS. Maintenance, replacement and reliability. Wiley. 1973.
  9. Cavacece M, Introini A. Analysis of Damage of Ball Bearings of Aeronautical Transmissions by Auto-Power Spectrum and Cross-Power Spectrum. Journal of Vibration and Acoustics. 2002;124(2):180–185. Available from: https://dx.doi.org/10.1115/1.1448320
  10. Pusey HC, Roemer MJ. An Assessment of Turbomachinery Condition Monitoring and Failure Prognosis Technology. The Shock and Vibration Digest. 1999;31:365–371. Available from: https://dx.doi.org/10.1177/058310249903100502
  11. Jardine AKS, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing. 2006;20:1483–1510. Available from: https://dx.doi.org/10.1016/j.ymssp.2005.09.012
  12. Vachtsevanos G, Lewis F, Roemer M, Hess A, Wu B. Intelligent fault diagnosis and prognosis for engineering systems. Wile. 2006.
  13. Huffman D. A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE. 1952;40:1098–1101. Available from: https://dx.doi.org/10.1109/jrproc.1952.273898
  14. Fernandes A, Jeberson W. An Image Compression Technique using Wavelets. In: Proceedings of IEEE TechSym 2014 Satellite Conference. 7-8 March 2014. VIT University. p. 7–8.
  15. Welba C, Eloundou P, Ele P. Exploitation of Differential Pulse Code Modulation for Compression of EMG Signals by a Combination of DWT and DCT. American Journal of Biomedical Engineering. 2014;4(2):25–32. Available from: https://doi.org/10.5923/j.ajbe.20140402.01
  16. Torres-Urgell L, Kirlin RL. Adaptive image compression using Karhunen-Loeve transform. Signal Processing. 1990;21(4):303–313. Available from: https://dx.doi.org/10.1016/0165-1684(90)90100-d
  17. Aharon M, Elad M, Bruckstein A. $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing. 2006;54(11):4311–4322. Available from: https://dx.doi.org/10.1109/tsp.2006.881199
  18. Beauchamp KG. Applications of Walsh and Related Functions: With an Introduction to Sequency Theory. (pp. 308) London, UK.. Academic Press. 1984.
  19. Beer T. Walsh transforms. Am. J. Phys. 1981;49:466–472.
  20. Okassa AJO, Ngantcha JP, Allogho GG, Ele P. Compression of Vibration Data by the Walsh-Hadamard Transform. Journal of Engineering and Applied Sciences. 2020;2020(10):2256–2260.


© 2020 Oyobe Okassa et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.