• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 25, Pages: 2658-2666

Original Article

Influence of Magneto-hydrodynamic with Williamson Nanofluid Flow Control of Forcheeimer Model under Chemical Reaction

Received Date:02 May 2024, Accepted Date:03 June 2024, Published Date:25 June 2024

Abstract

Objective: The research focused on Williamson's nonlinear governing flow on Magneto hydrodynamic incompressible, steady fluid over a porous stretching sheet in a two-dimensional direction. The permeable stretching sheet embedded by Williamson fluid is based on the flow model of non-Darcy Forchheimer law with chemical reaction. This article concentrated on an energy equation dominated by the dissipation parameter analysis. Methods: The governing mathematical partial derivative formulations are changed to a system of ordinary differential formulations with appropriate similarity transformation. The mathematical formulations are evaluated employing the numerical method of the R-K fourth-order scheme. MATLAB software bvp4c is used for computing numerical results. The numerical results and graphs were successfully demonstrated with the R-K fourth-order system. Findings: For the influence of Williamson non-Newtonian, non-fluid observed emerging dimensionless quantifiers such as Williamson number, porous, electric, thermophoresis, Brownian motion, Prandtl, and Schmidt dimensionless number respectively. The performance of non-dimensional parameters is investigated in detail. Novelty: As described in the results, Williamson's non-Newtonian nanofluid under the influence of magneto-hydrodynamics is mentioned as a new value to the existing literature. The gained results are the innovative study of the influence of chemical reaction on Williamson non-Newtonian nanofluid and magnetic strength and reported on dimensionless parameters.

Keywords: Electric parameter, Williamson Nanofluid, Darcy-Forchheimer, Viscous dissipation, Chemical reaction quantifier

References

  1. Ramanjini V, Krishna GG, Mishra SR, Sailajakumari SV, Sree HK. An unsteady axisymmetric Williamson nanofluid flow over a radially stretching Riga plate for the inclusion of mixed convection and thermal radiation. Partial Differential Equations in Applied Mathematics. 2022;6:1–13. Available from: https://doi.org/10.1016/j.padiff.2022.100456
  2. Agarwal R. Heat and mass transfer in electrically conducting micropolar fluid flow between two stretchable disks. Materials Today: Proceedings. 2021;46(Part 20):10227–10238. Available from: https://doi.org/10.1016/j.matpr.2020.11.614
  3. Gopal D, Saleem S, Jagadha S, Ahmad F, Almatroud AO, Kishan N. Numerical analysis of higher chemical reaction on electrically MHD nanofluid under influence of viscous dissipation. Alexandria Engineering Journal. 2021;60(1):1861–1871. Available from: https://doi.org/10.1016/j.aej.2020.11.034
  4. Jagadha S, Gopal D, Kumar PV, Kishan N, Durgaprasad P. Three dimensional MHD nanofluid stagnation point flow with higher order chemical reaction. Journal of Thermal Engineering. 2022;8(2):286–298. Available from: https://doi.org/10.18186/thermal.1086264
  5. Krishnamurthy MR, Prasannakumara BC, Gireesha BJ, Gorla RSR. Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium. Engineering Science and Technology, an International Journal. 2016;19(1):53–61. Available from: https://doi.org/10.1016/j.jestch.2015.06.010
  6. Duraihem FZ, Devi RLVR, Prakash P, Sreelakshmi TK, Saleem S, Durgaprasad P, et al. Enhanced heat and mass transfer characteristics of multiple slips on hydro-magnetic dissipative Casson fluid over a curved stretching surface. International Journal of Modern Physics B. 2023;37(23). Available from: https://doi.org/10.1142/S0217979223502296
  7. Reddy CS, KN, Rashidi MM. MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Transactions of A. Razmadze Mathematical Institute. 2017;171(2):195–211. Available from: https://doi.org/10.1016/j.trmi.2017.02.004
  8. Hayat T, Kiyani MZ, Alsaedi A, Khan MI, Ahmad I. Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction. International Journal of Heat and Mass Transfer. 2018;127(Part A):422–429. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.124
  9. Thumma T, Mishra SR, Abbas A, Bhatti M, Sara MM, Abdelsalam I. Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet. Applied Mathematics and Computation. 2022;421. Available from: https://doi.org/10.1016/j.amc.2022.126927
  10. Abdelsalam SI, Zaher AZ. Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime - a physiological approach. Applied Mathematics and Mechanics. 2023;44:1563–1576. Available from: https://doi.org/10.1007/s10483-023-3030-7
  11. Abdelsalam SI, Alsharif AM, Elmaboud YA, Abdellateef AI. Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis. Heliyon. 2023;9(5):1–15. Available from: https://doi.org/10.1016/j.heliyon.2023.e15916
  12. Abdelsalam SI, Magesh A, Tamizharasi P, Zaher AZ. Versatile response of a Sutterby nanofluid under activation energy: hyperthermia therapy. International Journal of Numerical Methods for Heat & Fluid Flow. 2024;34(2):408–428. Available from: https://doi.org/10.1108/HFF-04-2023-0173

Copyright

© 2024 Ashok et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.