• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 43, Pages: 3199-3209

Original Article

Knockdown of microRNA-375 suppresses cell proliferation and promotes apoptosis in human breast cancer cells

Received Date:17 September 2021, Accepted Date:25 November 2021, Published Date:14 December 2021


Background: The purpose of the present investigation is to unravel the influence of the miR-375 inhibitor on cell survival descent and apoptosis stimulation, mediating PI3K/Akt/mTOR signaling network in human breast cancer cells. Methods: MCF-7 cells were transfected with miR-375 inhibitor for 72 h. Then, cell survival assay was measured by MTT. Cells were stained with EtBr/AO, DAPI, and DCFH-DA to assess the effect of the miR-375 inhibitor on cell death. A scratch experiment was performed to observe the cell migration ability. The expression of anti-apoptotic and apoptotic genes such as BCL-2, BAX, and PI3K/Akt/mTOR and miR-375 were evaluated in miR-375 inhibitor transfected cells by qRT-PCR. Findings: MiR-375 inhibitor sensitized tumor cells and influenced significant loss in the breast cancer cell proliferation with obvious cell death elevation. MiR-375 inhibitor effectively augmented ROS generation. Also, miR-375 inhibition hampered migratory ability. Furthermore, our qRT-PCR analysis showed that inhibition of the miR-375 was able to significantly reduce the constitutive expression of PI3K/Akt/mTOR mRNAs. Additionally, miR-375 suppression decreased the anti-apoptotic gene, Bcl- 2 expression and enhanced pro-apoptotic gene, Bax expression along with potentially decreasing miR-375 level compared to control. Novelty and applications: Inhibition of the miR-375 has considerably attenuated cell proliferation and stimulated apoptotic cell death in the breast cancer cells. Thus, miR-375 represent a potential therapeutic target for the breast cancer.

Keywords: Breast Cancer; Proliferation; Apoptosis; Migration; miR-375


  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians. 2021;71(3):209–249. Available from: https://dx.doi.org/10.3322/caac.21660
  2. Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, et al. Cancer Statistics, 2020: Report From National Cancer Registry Programme, India. JCO Global Oncology. 2020;6(6):1063–1075. Available from: https://dx.doi.org/10.1200/go.20.00122
  3. CHEN CP, SUN ZL, LU X, WU WX, GUO WL, LU JJ, et al. miR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer. Oncology Reports. 2016;35(2):709–716. Available from: https://dx.doi.org/10.3892/or.2015.4411
  4. Xu K, Lin J, Zandi R, Roth JA, Ji L. MicroRNA-mediated target mRNA cleavage and 3′-uridylation in human cells. Scientific Reports. 2016;6(1):1–4. Available from: https://dx.doi.org/10.1038/srep30242
  5. Nowak I, Sarshad AA. Argonaute Proteins Take Center Stage in Cancers. Cancers. 2021;13(4):788. Available from: https://dx.doi.org/10.3390/cancers13040788
  6. Mayya VK, Flamand MN, Lambert AM, Jafarnejad SM, Wohlschlegel JA, Sonenberg N, et al. microRNA-mediated translation repression through GYF-1 and IFE-4 in C. elegans development. Nucleic Acids Research. 2021;49(9):4803–4815. Available from: https://dx.doi.org/10.1093/nar/gkab162
  7. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nature Reviews Molecular Cell Biology. 2021;22(6):425–438. Available from: https://dx.doi.org/10.1038/s41580-021-00354-w
  8. Jayamohan S, Kannan M, Moorthy RK, Rajasekaran N, Jung HS, Shin YK, et al. Dysregulation of miR-375/AEG-1 Axis by Human Papillomavirus 16/18-E6/E7 Promotes Cellular Proliferation, Migration, and Invasion in Cervical Cancer. Frontiers in Oncology. 2019;9:847. Available from: https://dx.doi.org/10.3389/fonc.2019.00847
  9. Kannan M, Jayamohan S, Moorthy RK, Chabattula SC, Ganeshan M, Arockiam AJV. AEG-1/miR-221 Axis Cooperatively Regulates the Progression of Hepatocellular Carcinoma by Targeting PTEN/PI3K/AKT Signaling Pathway. International Journal of Molecular Sciences. 2019;20(22):5526. Available from: https://dx.doi.org/10.3390/ijms20225526
  10. Long X, Shi Y, Ye P, Guo J, Zhou Q, Tang Y. MicroRNA-99a Suppresses Breast Cancer Progression by Targeting FGFR3. Frontiers in Oncology. 2020;9:1473. Available from: https://dx.doi.org/10.3389/fonc.2019.01473
  11. HU J, SHAN Z, HU K, REN F, ZHANG W, HAN M, et al. miRNA-223 inhibits epithelial-mesenchymal transition in gastric carcinoma cells via Sp1. International Journal of Oncology. 2016;49(1):325–335. Available from: https://dx.doi.org/10.3892/ijo.2016.3533
  12. Ma L. MicroRNA and metastasis. Advances in cancer research. 2016;132:165–207. Available from: https://doi.org/10.1016/bs.acr.2016.07.004
  13. Braicu C, Raduly L, Morar-Bolba G, Cojocneanu R, Jurj A, Pop LA, et al. Aberrant miRNAs expressed in HER-2 negative breast cancers patient. Journal of Experimental & Clinical Cancer Research. 2018;37(1):1–6. Available from: https://dx.doi.org/10.1186/s13046-018-0920-2
  14. Guan X, Shi A, Zou Y, Sun M, Zhan Y, Dong Y, et al. EZH2-Mediated microRNA-375 Upregulation Promotes Progression of Breast Cancer via the Inhibition of FOXO1 and the p53 Signaling Pathway. Frontiers in Genetics. 2021;12:382. Available from: https://dx.doi.org/10.3389/fgene.2021.633756
  15. Zhao Q, Liu Y, Wang T, Yang Y, Ni H, Liu H, et al. MiR-375 inhibits the stemness of breast cancer cells by blocking the JAK2/STAT3 signaling. European Journal of Pharmacology. 2020;884:173359. Available from: https://dx.doi.org/10.1016/j.ejphar.2020.173359
  16. Alam KJ, Mo JS, Han SH, Park WC, Kim HS, Yun KJ, et al. MicroRNA 375 regulates proliferation and migration of colon cancer cells by suppressing the CTGF-EGFR signaling pathway. International Journal of Cancer. 2017;141(8):1614–1629. Available from: https://dx.doi.org/10.1002/ijc.30861
  17. Tang W, Li GS, Li JD, Pan WY, Shi Q, Xiong DD, et al. The role of upregulated miR-375 expression in breast cancer: An in vitro and in silico study. Pathology - Research and Practice. 2020;216(1):152754. Available from: https://dx.doi.org/10.1016/j.prp.2019.152754
  18. Simonini PdSR, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, et al. Epigenetically Deregulated microRNA-375 Is Involved in a Positive Feedback Loop with Estrogen Receptor α in Breast Cancer Cells. Cancer Research. 2010;70(22):9175–9184. Available from: https://dx.doi.org/10.1158/0008-5472.can-10-1318
  19. Guan X, Shi A, Zou Y, Sun M, Zhan Y, Dong Y, et al. EZH2-Mediated microRNA-375 Upregulation Promotes Progression of Breast Cancer via the Inhibition of FOXO1 and the p53 Signaling Pathway. Frontiers in Genetics. 2021;12:382. Available from: https://dx.doi.org/10.3389/fgene.2021.633756
  20. Nurzadeh M, Naemi M, Hasani SS. A comprehensive review on oncogenic miRNAs in breast cancer. Journal of Genetics. 2021;100(1):1–21. Available from: https://dx.doi.org/10.1007/s12041-021-01265-7
  21. Frank AC, Ebersberger S, Fink AF, Lampe S, Weigert A, Schmid T, et al. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nature Communications. 2019;10(1):1–8. Available from: https://dx.doi.org/10.1038/s41467-019-08989-2
  22. Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Gonçalves CS, et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clinical Epigenetics. 2015;7(1):1–4. Available from: https://dx.doi.org/10.1186/s13148-015-0076-2
  23. Wang Y, Lieberman R, Pan J, Zhang Q, Du M, You M, et al. Abstract 4948: miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Clinical Research (Excluding Clinical Trials). 2016;15(1):1. doi: 10.1186/s12943-016-0556-9
  24. Zedan AH, Osther PJS, Assenholt J, Madsen JS, Hansen TF. Circulating miR-141 and miR-375 are associated with treatment outcome in metastatic castration resistant prostate cancer. Scientific Reports. 2020;10(1):1–9. Available from: https://dx.doi.org/10.1038/s41598-019-57101-7
  25. Abramovic I, Vrhovec B, Skara L, Vrtaric A, Gabaj NN, Kulis T, et al. MiR-182-5p and miR-375-3p Have Higher Performance Than PSA in Discriminating Prostate Cancer from Benign Prostate Hyperplasia. Cancers. 2021;13(9):2068. Available from: https://dx.doi.org/10.3390/cancers13092068
  26. Jin Y, Liu Y, Zhang J, Huang W, Jiang H, Hou Y, et al. The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer. PLOS ONE. 2015;10(12):e0144187. Available from: https://dx.doi.org/10.1371/journal.pone.0144187
  27. Zou Q, Yi W, Huang J, Fu F, Chen G, Zhong D. MicroRNA-375 targets PAX6 and inhibits the viability, migration and invasion of human breast cancer MCF-7 cells. Experimental and Therapeutic Medicine. 2017;14(2):1198–1204. Available from: https://dx.doi.org/10.3892/etm.2017.4593
  28. Liu J, Wang P, Zhang P, Zhang X, Du H, Liu Q, et al. An integrative bioinformatics analysis identified miR-375 as a candidate key regulator of malignant breast cancer. Journal of Applied Genetics. 2019;60(3-4):335–346. Available from: https://dx.doi.org/10.1007/s13353-019-00507-w
  29. Hu Y, Ma Y, Luo G, Liao W, Zhang S, Li G. Effect of MiR-375 Regulates YAP1 on the Invasion, Apoptosis, and Epithelial-Mesenchymal Transition of Cervical Cancer HeLa Cells. Evidence-Based Complementary and Alternative Medicine. 2021;2021:1–8. Available from: https://dx.doi.org/10.1155/2021/3088723
  30. Babu KR, Tay Y. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer. International Journal of Molecular Sciences. 2019;20(21):5335. Available from: https://dx.doi.org/10.3390/ijms20215335
  31. Guo J, Yang C, Zhang S, Liang M, Qi J, Wang Z, et al. MiR-375 induces ROS and apoptosis in ST cells by targeting the HIGD1A gene. Gene. 2019;685:136–142. Available from: https://dx.doi.org/10.1016/j.gene.2018.10.086
  32. Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/β‐catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. Journal of Cellular Physiology. 2018;233(2):811–817. Available from: https://dx.doi.org/10.1002/jcp.25897
  33. Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of Regulatory Oncogenic or Tumor Suppressor miRNAs of PI3K/AKT Signaling Axis in the Pathogenesis of Colorectal Cancer. Current Pharmaceutical Design. 2019;24(39):4605–4610. Available from: https://dx.doi.org/10.2174/1381612825666190110151957
  34. Niu T, Zhang W, Xiao W. MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer. Cancer Cell International. 2021;21(1):31. Available from: https://dx.doi.org/10.1186/s12935-020-01716-8
  35. Pronina IV, Loginov VI, Burdennyy AM, Fridman MV, Senchenko VN, Kazubskaya TP, et al. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 2017;604:1–8. Available from: https://dx.doi.org/10.1016/j.gene.2016.12.018
  36. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cellular & Molecular Immunology. 2021;18(5):1106–1121. Available from: https://dx.doi.org/10.1038/s41423-020-00630-3
  37. Gao HE, Sun Y, Ding YH, Long J, Liu XL, Yang M, et al. Antineoplastic effects of CPPTL via the ROS/JNK pathway in acute myeloid leukemia. Oncotarget. 2017;8(24):38990–39000. Available from: https://dx.doi.org/10.18632/oncotarget.17166
  38. He J, Xu Q, Jing Y, Agani F, Qian X, Carpenter R, et al. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR‐199a/125b and DNA methylation. EMBO reports. 2012;13(12):1116–1122. Available from: https://dx.doi.org/10.1038/embor.2012.162
  39. Houri K, Mori T, Onodera Y, Tsujimoto T, Takehara T, Nakao S, et al. miR-142 induces accumulation of reactive oxygen species (ROS) by inhibiting pexophagy in aged bone marrow mesenchymal stem cells. Scientific Reports. 2020;10(1):1–3. Available from: https://dx.doi.org/10.1038/s41598-020-60346-2
  40. Soliman AM, Das S, Ghafar NA, Teoh SL. Role of MicroRNA in Proliferation Phase of Wound Healing. Frontiers in Genetics. 2018;9:38. Available from: https://dx.doi.org/10.3389/fgene.2018.00038
  41. Deyell M, Garris CS, Laughney AM. Cancer metastasis as a non-healing wound. British Journal of Cancer. 2021;124(9):1491–1502. Available from: https://dx.doi.org/10.1038/s41416-021-01309-w
  42. Xu Y, Jin J, Liu Y, Huang Z, Deng Y, You T, et al. Snail-Regulated MiR-375 Inhibits Migration and Invasion of Gastric Cancer Cells by Targeting JAK2. PLoS ONE. 2014;9(7):e99516. Available from: https://dx.doi.org/10.1371/journal.pone.0099516
  43. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–152. Available from: https://dx.doi.org/10.1038/nature06487
  44. Thapa S, Rather RA, Singh SK, Bhagat M. Insights into the Role of Defective Apoptosis in Cancer Pathogenesis and Therapy. IntechOpen. 2021. 10.5772/intechopen.97536
  45. Inoue J, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. Journal of Human Genetics. 2021;66(9):937–945. Available from: https://dx.doi.org/10.1038/s10038-021-00938-6
  46. Al-Aamri HM, Irving HR, Bradley C, Meehan-Andrews T. Intrinsic and extrinsic apoptosis responses in leukaemia cells following daunorubicin treatment. BMC Cancer. 2021;21(1):438. Available from: https://dx.doi.org/10.1186/s12885-021-08167-y
  47. Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. International Journal of Molecular Sciences. 2020;22(1):173. Available from: https://dx.doi.org/10.3390/ijms22010173
  48. Tokunaga E, Kimura Y, Mashino K, Oki E, Kataoka A, Ohno S, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer. 2006;13(2):137–144. Available from: https://dx.doi.org/10.2325/jbcs.13.137
  49. Syeda ZA, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. International Journal of Molecular Sciences. 2020;21(5):1723. Available from: https://dx.doi.org/10.3390/ijms21051723
  50. Ni H, Qin H, Sun C, Liu Y, Ruan G, Guo Q, et al. MiR-375 reduces the stemness of gastric cancer cells through triggering ferroptosis. Stem Cell Research & Therapy. 2021;12(1):1–7. Available from: https://dx.doi.org/10.1186/s13287-021-02394-7
  51. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: A review. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2011;1813(1):238–259. Available from: https://dx.doi.org/10.1016/j.bbamcr.2010.10.010


© 2021 Moorthy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.