• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 22, Pages: 2264-2271

Original Article

Mechanical properties of YBCO superconductor under high-pressure

Received Date:26 April 2020, Accepted Date:15 June 2020, Published Date:28 June 2020


Background/Objectives: The crystal structure of YBCO Superconductor has fascinated the material science research group. The calculation of mechanical properties of YBCO Superconductor under pressure is the main focus in this research work. Methods/Statistical analysis: Density Functional Theory calculations using Quantum ESPRESSO under high pressure increasing systematically have been calculated and performed for YBa2Cu3o7 Superconductor. The only input required is the lattice parameters at corresponding pressure of materials which are predicted using first principle computational methods at desired high-pressure state. Findings: The lattice constants, variations, volume, density, Bulk modulus (B), Young modulus (E), Shear modulus (S) and Poisson ratio (n)values are calculated under pressure up to 30 GPa for YBCO Superconductor. Voigt-Reuss-Hill Approximations, Debye Sound velocities(ϑD), Debye temperature(θD) and Pugh's ratio(B/G) values have been calculated under pressure for YBCO Superconductor in this research work. Novelty/Applications: A larger poisson's ratio value indicates ductile behavior and another criterion often used to differentiate between ductile and brittle behavior is the Poisson's ratio. Poisson's ratio greater than 0.26 implies the ductile behavior. With the application of elastic constants, we have obtained the Debye temperature and other physical quantities of YBa2Cu3o7 under pressure.

Keywords: YBCO superconductor; density functional theory (DFT); lattice constants; pressure; quantum ESPRESSO


  1. Onnes HK. The Superconductivity of Mercury. Comm. Phys. Lab. Univ. 1911;p. 122–124.
  2. Narlikar AV. Small Superconductors-Introduction. The Oxford Handbook of Small Superconductors. 2017.
  3. Thompson JD, Maley MP, Newkirka LR, Valenciaa FA, Lima KC. Superconductivity in A15 Nb3(Ge, Ga) and Nb3(Ge, B) compounds. Physica B+C. 1981;107:267–268.
  4. Bednorz JG, M�ller KA. Possible highT c superconductivity in the Ba?La?Cu?O system. Zeitschrift f�r Physik B Condensed Matter. 1986;64(2):189–193. Available from: https://dx.doi.org/10.1007/bf01303701
  5. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters. 1987;58(9):908–910. Available from: https://dx.doi.org/10.1103/physrevlett.58.908
  6. Maeda H, Tanaka Y, Fukutomi M, Asano T. A New High-Tc Oxide Superconductor without a Rare Earth Element. Japanese journal of pure applied physics. 1988;27. Available from: https://doi.org/10.1143/JJAP.27.L209
  7. Sheng ZZ, Hermann AM, Ali AE, Almasan C, Estrada J, Datta T, et al. Superconductivity at 90 K in the Tl-Ba-Cu-O system. Physical Review Letters. 1988;60(10):937–940. Available from: https://dx.doi.org/10.1103/physrevlett.60.937
  8. Shah MC, Wani TA, Prasad T, Gaffar A, Ahmad I. An Analysis of Integral Challenges and Promises for Technological Applications of Emerging HTSC. Integrated Ferroelectrics. 2010;118(1):45–52. Available from: https://dx.doi.org/10.1080/10584587.2010.489473
  9. Hott R. AVN., ed. High Temperature Superconductivity 2. Berlin Heidelberg. Springer-Verlag. 2004.
  10. Tixador P. AVN., ed. High Temperature Superconductivity 2 . Berlin Heidelberg. Springer-Verlag. 2004.
  11. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD. Optimized pseudopotentials. Physical Review B. 1990;41(2):1227–1230. Available from: https://dx.doi.org/10.1103/physrevb.41.1227
  12. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996;77(18):3865–3868. Available from: https://dx.doi.org/10.1103/physrevlett.77.3865
  13. Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A. 1952;65(5):349–354. Available from: https://dx.doi.org/10.1088/0370-1298/65/5/307
  14. Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. 1929;9(1):49–58. Available from: https://dx.doi.org/10.1002/zamm.19290090104


© 2020 Prabhakar, Wani. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.