• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 6, Pages: 558-572

Original Article

Modeling the thermo physical behavior of metallic porous fin on varying convective loads

Received Date:05 October 2020, Accepted Date:20 December 2020, Published Date:23 February 2021


Background/ Objectives: Porous-permeable structured fins are the principal operational mechanism for enhancing the percentage of heat evolved and dissipated because of their many thermo physical characteristics. Study of thermal gradients on the basis of convective loads in porous fins is important in many engineering fields. Methods: In the present fractional investigation, well-established optimal homotopy asymptotic method (OHAM) has been applied on thermal system expressed in nonlinear fractional order of ordinary differential equations for Darcy’s approach for porous-structured fin. Hereparameters related to porosity, permeability and convection have been deliberated. In order to study the thermal solicitations, the thermal analysis with insulated tip of copper based alloy is studied. Findings: It is found that porosity of system is influencing more than other factors. Novelty: This study demonstrates the efficiency of OHAM as well.

Keywords: Porous; thermal; Optimal Homotopy Asymptotic Method (OHAM); darcy


  1. Saedodin S, Shahbabaei M. Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM) Arabian Journal for Science and Engineering. 2013;38(8):2227–2231. Available from: https://dx.doi.org/10.1007/s13369-013-0581-6
  2. Chakrabarti SS, Das PK, Ghosh I. Thermal behavior of wet porous and solid fin-Experimental and analytical approach. I. J. Mechanical Sciences. 2018;149:112–121.
  3. Akbarzadeh P, Mahian O. The onset of Nano fluid natural convection inside a porous layer with rough boundaries. Journal of Molecular Liquids. 2018;272:344–352.
  4. Joo Y, Kim J, S. Thermal optimization of vertically oriented, internally finned tubes in natural convection. International Journal of Heat and Mass Transfer. 2016;93:991–999.
  5. Kiwan S, Al-Nimr MA. Using Porous Fins for Heat Transfer Enhancement. Journal of Heat Transfer. 2001;123(4):790–795. Available from: https://dx.doi.org/10.1115/1.1371922
  6. Kiwan S. Thermal Analysis of Natural Convection Porous Fins. Transport in Porous Media. 2007;67(1):17–29. Available from: https://dx.doi.org/10.1007/s11242-006-0010-3
  7. Khaled ARA. Investigation of Heat Transfer Enhancement Through Permeable Fins. Journal of Heat Transfer. 2010;132(3):132. Available from: https://dx.doi.org/10.1115/1.4000056
  8. Kiwan S, Zeitoun O. Natural convection in a horizontal cylindrical annulus using porous fins. International Journal of Numerical Methods for Heat & Fluid Flow. 2008;18(5):618–634. Available from: https://dx.doi.org/10.1108/09615530810879747
  9. Ghalambaz M, Jamesahar E, Ismael MA, Chamkha AJ. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. International Journal of Thermal Sciences. 2017;111:256–273. Available from: https://dx.doi.org/10.1016/j.ijthermalsci.2016.09.001
  10. Ma J, Sun YS, Li BW, Chen H. Spectral collocation method for radiative- conductive porous fin with temperature dependent properties. Energy Convers Manage. 2016;111:279–288.
  11. Moradi A, Fallah APM, Hayat T, Aldossary OM. On Solution of Natural Convection and Radiation Heat Transfer Problem in a Moving Porous Fin. Arabian Journal for Science and Engineering. 2014;39(2):1303–1312. Available from: https://dx.doi.org/10.1007/s13369-013-0708-9
  12. Hatami M, Ahangar GHRM, Ganji DD, Boubaker K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management. 2014;84:533–540. Available from: https://dx.doi.org/10.1016/j.enconman.2014.05.007
  13. Roy S, Schell KG, Bucharsky EC, Weidenmann KA, Wanner A, Hoffmann MJ. Processing and characterization of elastic and thermal expansion behaviour of interpenetrating Al12Si/alumina composites. Materials Science and Engineering: A. 2019;743:339–348. Available from: https://dx.doi.org/10.1016/j.msea.2018.11.100
  14. Hirata Y, Kinoshita Y, Shimonosono T, Chaen T. Theoretical and experimental analyses of thermal properties of porous polycrystalline mullite. Ceramics International. 2017;43(13):9973–9978. Available from: https://dx.doi.org/10.1016/j.ceramint.2017.05.009
  15. Wang L, Zeng Z, Zhang L, Xie H, Lu Y. A lattice Boltzmann model for thermal flows through porous media. Applied Thermal Engineering. 2016;108:66–75.
  16. Tang GH, Bi C, Zhao Y, Tao WQ. Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy. 2015;90:701–721. Available from: https://dx.doi.org/10.1016/j.energy.2015.07.109
  17. Ozgumus T, Mobedi M. Effect of pore to throat size ratio on thermal dispersion in porous media. International Journal of Thermal Sciences. 2016;104:135–145. Available from: https://dx.doi.org/10.1016/j.ijthermalsci.2016.01.003
  18. Jin X, Dong L, Li Q, Tang H, Qu Q. Thermal shock cracking of porous ZrB2-SiC ceramics. Ceramics International. 2016;42(11):13309–13313.
  19. Marinca V, Herisanu N. The optimal homotopy asymptotic method for solving Blasius equation. Appl. Maths. Comput. 2014;231:134–139.
  20. Ali L, Tassaddiq A, Ali R, Islam S, Gul T, Kumam P, et al. A new analytical approach for the research of thin‐film flow of magneto hydrodynamic fluid in the presence of thermal conductivity and variable viscosity. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2021;101(2). Available from: https://dx.doi.org/10.1002/zamm.201900292
  21. Ndlovu PL, Moitsheki RJ. Steady state heat transfer analysis in a rectangular moving porous fin. Propulsion and Power Research. 2020;9:188–196. Available from: https://dx.doi.org/10.1016/j.jppr.2020.03.002
  22. Shah Z, Dawar A, Alzahrani EO, Kumam P, Khan AJ, Islam S. Hall Effect on Couple Stress 3D Nanofluid Flow Over an Exponentially Stretched Surface With Cattaneo Christov Heat Flux Model. IEEE Access. 2019;7:64844–64855. Available from: https://dx.doi.org/10.1109/access.2019.2916162
  23. Shah Z, Dawar A, Kumam P, Khan W, Islam S. Impact of Nonlinear Thermal Radiation on MHD Nanofluid Thin Film Flow over a Horizontally Rotating Disk. Applied Sciences. 2019;9(8). Available from: https://dx.doi.org/10.3390/app9081533
  24. Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I. Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle. Scientific Reports. 2019;9(1):1196. Available from: https://dx.doi.org/10.1038/s41598-018-37964-y
  25. Sheikholeslami M, Shah Z, Tassaddiq A, Shafee A, Khan I. Application of Electric Field for Augmentation of Ferrofluid Heat Transfer in an Enclosure Including Double Moving Walls. IEEE Access. 2019;7:21048–21056. Available from: https://dx.doi.org/10.1109/access.2019.2896206
  26. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates. Results in Physics. 2018;9:1201–1214. Available from: https://dx.doi.org/10.1016/j.rinp.2018.01.064
  27. Kumar R, Kumar R, Shehzad SA, Chamkha AJ. Optimal treatment of stratified Carreau and Casson nanofluids flows in Darcy-Forchheimer porous space over porous matrix. Applied Mathematics and Mechanics. 2020;41(11):1651–1670. Available from: https://dx.doi.org/10.1007/s10483-020-2655-7
  28. Iqbal S, Idrees M, Siddiqui AM, Ansari AR. Some solutions of the linear and nonlinear Klein–Gordon equations using the optimal homotopy asymptotic method. Applied Mathematics and Computation. 2010;216(10):2898–2909. Available from: https://dx.doi.org/10.1016/j.amc.2010.04.001
  29. Iqbal S, Javed A. Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Applied Mathematics and Computation. 2011;217(19):7753–7761. Available from: https://dx.doi.org/10.1016/j.amc.2011.02.083
  30. Hashmi MS, Khan N, Iqbal S. Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method. Computers & Mathematics with Applications. 2012;64(6):1567–1574. Available from: https://dx.doi.org/10.1016/j.camwa.2011.12.084
  31. Hashmi MS, Khan N, Iqbal S. Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind. Applied Mathematics and Computation. 2012;218(22):10982–10989. Available from: https://dx.doi.org/10.1016/j.amc.2012.04.059
  32. Golbabai A, Fardi M, Sayevand K. Application of the optimal homotopy asymptotic method for solving a strongly nonlinear oscillatory system. Mathematical and Computer Modelling. 2013;58(11-12):1837–1843. Available from: https://dx.doi.org/10.1016/j.mcm.2011.12.027
  33. Pankaj S, Santosh B, Kishor K, Sarang J. Experimental Investigation of Heat Transfer by Natural Convection with Perforated Pin Fin Array. Procedia Manufacturing. 2018;20:311–317. Available from: https://dx.doi.org/10.1016/j.promfg.2018.02.046
  34. Tijani AS, Jaffri NB. Thermal analysis of perforated pin-fins heat sink under forced convection condition. Procedia Manufacturing. 2018;24:290–298. Available from: https://dx.doi.org/10.1016/j.promfg.2018.06.025


© 2021 Mustahsan et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.