• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 12, Pages: 1180-1188

Original Article

Morphological, Optical and Voronoi Polygon Analysis of Breath Figures Prepared on Polymeric Surface

Received Date:30 January 2024, Accepted Date:29 February 2024, Published Date:14 March 2024


Background/ Objectives: The formation of breath figures over polymers like polystyrene has vast applications in material science for making numerous micro- and nanopatterned functional surfaces. However, the breath figures (BFs) method is a complex phenomenon as the actual formation of structures are many times unpredictable and the nature of structure depends on the type of polymer, solvent, degree of humidity and additives used.  The work presented in this paper deals with the study of condensation on the surface of volatile polystyrene polymer solution and their uses for non-wetting using optical and morphological studies along with mathematical model Voronoi polygon analysis using polystyrene and solvent of benzene and chloroform. The growth dynamics of Breath-Figures (BFs) formed due to condensation is presented in brief. Method: Breath Figure (BF) patterns were prepared by two solvents: benzene and chloroform. Different representative values of relative Humidity viz. 60, 70, 80 and 90 % were employed for making BFs. Two different polymer concentrations of 5 and 10 w/v % was used in this study. Findings: The morphology has been statistically analyzed for different parameters like average diameter and their size distribution etc. In case of BFs formed on benzene surface, droplet has average diameter of about 12 µm at 90% humidity but in case of chloroform surface this diameter is about 25 µm at 90% humidity. Voronoi analysis demonstrates simplistic way to qualitatively check the six-fold order and the coordination numbers in BFs. Novelty: The work shows comparative study of BFs patterns using polystyrene on two different solvents with changing humidity. The study shows morphology of the breath patterns is mainly dependent on the polymer concentration, humidity and density of solvents which is a new observation. The study leads to the acquisition of new knowledge on BFs which provides insight important for various applications including biological fields.

Keywords: Breath­figures, Voronoi polygon, Polystyrene, Contact angle, Condensation


  1. Zhang S, Peng B, Li M, Diao H, Wang X, Zhao W, et al. Immobilization of Active Substances in Food Using Self‐Organized Patterned Porous Film via Breath Figure Approach. ChemistrySelect. 2021;6(5):1067–1072. Available from: https://doi.org/10.1002/slct.202004827
  2. Swathi PV, Madhurima V. Porous polymer film formation by water droplet templating using polystyrene. The European Physical Journal E. 2023;46(4). Available from: https://doi.org/10.1140/epje/s10189-023-00282-x
  3. Dent FJ, Harbottle D, Warren NJ, Khodaparast S. Temporally Arrested Breath Figure. ACS Applied Materials & Interfaces. 2022;14(23):27435–27443. Available from: https://doi.org/10.1021/acsami.2c05635
  4. Ananthakeshava I, Srikanth NJ, Prasad KN, Vinu V. Reduction in Surface Tension of Water Due to Pranic Healing. Indian Journal of Science and Technology. 2021;14(26):2175–2179. Available from: https://doi.org/10.17485/IJST/v14i26.488
  5. Frenkel M, Fedorets AA, Dombrovsky LA, Nosonovsky M, Legchenkova I, Bormashenko E. Continuous Symmetry Measure vs Voronoi Entropy of Droplet Clusters. The Journal of Physical Chemistry C. 2021;125(4):2431–2436. Available from: https://doi.org/10.1021/acs.jpcc.0c10384
  6. Rajaram M, Kandasamy S, Ravichandran A, Muthadhi A. Effect of Polystyrene Waste on Concrete at Elevated Temperature. Indian Journal of Science and Technology. 2022;15(38):1912–1922. Available from: https://doi.org/10.17485/IJST/v15i38.225
  7. Zhang X, Wang B, Huang L, Huang W, Wang Z, Zhu W, et al. Breath figure–derived porous semiconducting films for organic electronics. Science Advances. 2020;6(13):1–9. Available from: https://doi.org/10.1126/sciadv.aaz1042
  8. Estimé ML, Schindler M, Shahidzadeh N, Bonn D, . Droplet Size Distribution in Emulsions. Langmuir. 2024;40(1):275–281. Available from: https://doi.org/10.1021/acs.langmuir.3c02463
  9. Wong WHB, Janssen PJA, Hulsen MA, Anderson PD. Numerical simulations of the polydisperse droplet size distribution of disperse blends in complex flow. Rheologica Acta. 2021;60(4):187–207. Available from: https://doi.org/10.1007/s00397-021-01258-4
  10. Han JW, Joo CW, Lee J, Ramadhan ZR, Hong J, Park SB, et al. Enhancement of spectral stability and outcoupling efficiency in organic light-emitting diodes with breath figure patterned microlens array films. Optical Materials. 2019;96:109262. Available from: https://doi.org/10.1016/j.optmat.2019.109262
  11. Kumar V, Dash S. Evaporation-Based Low-Cost Method for the Detection of Adulterant in Milk. ACS Omega. 2021;6(41):27200–27207. Available from: https://doi.org/10.1021/acsomega.1c03887
  12. Carreón YJP, Díaz-Hernández O, Santos GJE, Cipriano-Urbano I, Solorio-Ordaz FJ, González-Gutiérrez J, et al. Texture Analysis of Dried Droplets for the Quality Control of Medicines. Sensors. 2021;21(12):1–24. Available from: https://doi.org/10.3390/s21124048
  13. Bormashenko E, Frenkel M, Vilk A, Legchenkova I, Fedorets AA, Aktaev NE, et al. Characterization of Self-Assembled 2D Patterns with Voronoi Entropy. Entropy. 2018;20(12):1–13. Available from: https://doi.org/10.3390/e20120956
  14. Zhang R, Liao W, Wang Y, Wang Y, Wilson DI, Clarke SM, et al. The growth and shrinkage of water droplets at the oil-solid interface. Journal of Colloid and Interface Science. 2021;584:738–748. Available from: https://doi.org/10.1016/j.jcis.2020.09.102
  15. He C, Zhang P, He Z, Yue L. Analysis of spray characteristics of a jet-film injection element based on Voronoi tessellation. Acta Astronautica. 2023;206:100–113. Available from: https://doi.org/10.1016/j.actaastro.2023.02.006
  16. Honda K, Fujiwara K, Hasegawa K, Kaneko A, Abe Y. Coalescence and mixing dynamics of droplets in acoustic levitation by selective colour imaging and measurement. Scientific Reports. 2023;13(1):1–12. Available from: https://doi.org/10.1038/s41598-023-46008-z
  17. Cheng G, Xuan Z, ZT, Tian S, Ding G, Wan X. TiCT MXene modification using silicane or quaternary ammonium salt via covalent bonding or interaction for high-performance composites. Polymer Composites. 2023;44(12):8378–8388. Available from: https://doi.org/10.1002/pc.27704
  18. Schnell G, Polley C, Thomas R, Bartling S, Wagner J, Springer A, et al. How droplets move on laser-structured surfaces: Determination of droplet adhesion forces on nano- and microstructured surfaces. Journal of Colloid and Interface Science. 2023;630(Part A):951–964. Available from: https://doi.org/10.1016/j.jcis.2022.10.091
  19. Bangoura MA, Mimeau D, Balnois E, Réhel K, Azemar F, Linossier I. Impact of Molecular Weight on Anti-Bioadhesion Efficiency of PDMS-Based Coatings. Coatings. 2024;14(1):1–15. Available from: https://doi.org/10.3390/coatings14010149
  20. Liu W, Zhou Z, Liao X, Li C, Tang H, Xie M, et al. Tailoring ordered microporous structure of cellulose-based membranes through molecular hydrophobicity design. Carbohydrate Polymers. 2020;229:115425. Available from: https://doi.org/10.1016/j.carbpol.2019.115425
  21. Gdc P, Marambio OG, Jeria-Orell M, Oyarzún DP, Martin-Trasanco R, Sánchez J. Porous Surface Films with Tunable Morphologies and Hydrophobic Properties Based on Block Copolymer Under the Effects of Thermal Annealing. Frontiers in Chemistry. 2019;7:1–9. Available from: https://doi.org/10.3389/fchem.2019.00181
  22. Huang J, Zhu J, Sun W, Ji J. Versatile and Functional Surface Patterning of in Situ Breath Figure Pore Formation via Solvent Treatment. ACS Applied Materials & Interfaces. 2020;12(41):47048–47058. Available from: https://doi.org/10.1021/acsami.0c14614
  23. Liu W, Li C, Lin X, Xie H, Chen Y, Li Z, et al. Ordered porous films of biomass-based polymers by breath figure: a review. Cellulose. 2022;29(12):6463–6491. Available from: https://doi.org/10.1007/s10570-022-04679-3
  24. Ijaz A, Topcu G, Miko A, Demirel AL. Synergistic control of breath figures on Styrene-Butadiene-Styrene films by poly-2-ethyl-2-oxazoline capped CaCl2 loaded mesoporous silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;672:131740. Available from: https://doi.org/10.1016/j.colsurfa.2023.131740


© 2024 Deokar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.