• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 12, Pages: 1107-1116

Original Article

Multiclass Classification and Identification of the External Eye Diseases using Deep CNN

Received Date:03 January 2024, Accepted Date:11 February 2024, Published Date:14 March 2024


Objective: These eye illnesses can be either internal eye diseases or external eye diseases. The purpose of research is to find the right model for better performance to identify the external eye disease. The model is customised with 16- layers CNN using multiclass classification. Method: The Deep CNN techniques are utilized with multiclass classification, and the model is developed using Vgg16 with different dropout rates of 0.25 and 0.50 to improve accuracy and performance. In this work, a deep convolutional neural network model is proposed to classify and identify external eye diseases like conjunctivitis, blepharitis, and cellulitis. Datasets were taken in 80:20 randomly from blepharitis, cellulitis, and Conjunctivitis to test (242) and train (968) the model after pre-processing. Novelty: The model is novel and unique using deep CNN, Vgg16, and multiclass classification because it has never been classified and predicted previously for external eye disease. Additionally, Vgg16 with dropout rates of 0.25 and 0.50 was not tested. The model is penetrated into fully connected (FC) layers with different dropout rates. Findings: The accuracy of 98.48% and 0.976% for deep CNN and multiclass classification consecutively produced satisfactory results. The efficiency of R2 is evaluated with multiple classes of data that resulted in a range of 0.425 - 0.775 with k = 10 folds. Vgg16 attains the highest performance of 71.54% with changed dropout rates. The effects of fundus in the ocular, such as retinopathy and AMD, can be examined in the future with segmented data using CNN for better optimization. On account of biological changes in eye and retinal structure, models might be constructed or studied.

Keywords: Multiclass Classification, Identification, Deep CNN, External Eye Disease, Evaluation


  1. Rafay A, Asghar Z, Manzoor H, Hussain W. EyeCNN: exploring the potential of convolutional neural networks for identification of multiple eye diseases through retinal imagery. International Ophthalmology. 2023;43(10):3569–3586. Available from: https://doi.org/10.1007/s10792-023-02764-5
  2. Grzybowski A, Brona P, Lim G, Ruamviboonsuk P, Tan GSW, Abramoff M, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye. 2020;34(3):451–460. Available from: https://doi.org/10.1038/s41433-019-0566-0
  3. Kaushal V, Hada NS, Sharma S. Eye Disease Detection Through Image Classification Using Federated Learning. SN Computer Science. 2023;4(6). Available from: https://doi.org/10.1007/s42979-023-02211-3
  4. Ce Z, Xieolin X, Wang Z, Li W, Chen J, Qiao T, et al. Development and validation of deep learning algorithms for automated eye laterality detection with anterior segment photography. Scientific Reports. Scientific Reports . 2021;11(1):1–8. Available from: https://doi.org/10.1038/s41598-020-79809-7
  5. Cheung CY, Tang F, Ting D, Tan G, Wong TY. Artificial Intelligence in Diabetic Eye Disease Screening. The Asia-Pacific Journal of Ophthalmology. 2019;8(2):158–164. Available from: https://journals.lww.com/apjoo/fulltext/2019/03000/artificial_intelligence_in_diabetic_eye_disease.8.aspx
  6. Shahriari MH, Sabbaghi H, Asadi F, Hosseini A, Khorrami Z. Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review. Survey of Ophthalmology. 2023;68(1):42–53. Available from: https://doi.org/10.1016/j.survophthal.2022.08.004
  7. Belyhun Y, Moges F, Endris M, Asmare B, Amare B, Bekele D, et al. Ocular bacterial infections and antibiotic resistance patterns in patients attending Gondar Teaching Hospital, Northwest Ethiopia. BMC Research Notes. 2018;11(1):1–7. Available from: https://doi.org/10.1186/s13104-018-3705-y
  8. Sarki R, Ahmed K, Wang H, Zhang Y. Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Information Science and Systems. 2020;8(1). Available from: https://doi.org/10.1007/s13755-020-00125-5
  9. Sait ARW. Artificial Intelligence-Driven Eye Disease Classification Model. Applied Sciences. 2023;13(20):1–18. Available from: https://doi.org/10.3390/app132011437
  10. Ma J, Xu X, Li M, Zhang Y, Zhang L, Ma P, et al. Predictive models of aging of the human eye based on ocular anterior segment morphology. Journal of Biomedical Informatics. 2021;120:1–8. Available from: https://doi.org/10.1016/j.jbi.2021.103855
  11. Shakeri E, Crump T, Weis E, Mohammed E, Souza R, Far B. Explaining Eye Diseases Detected by Machine Learning Using SHAP: A Case Study of Diabetic Retinopathy and Choroidal Nevus. SN Computer Science. 2023;4(5). Available from: https://doi.org/10.1007/s42979-023-01859-1
  12. Mahmoud MH, Alamery S, Fouad H, Altinawi A, Youssef AE. An automatic detection system of diabetic retinopathy using a hybrid inductive machine learning algorithm. Personal and Ubiquitous Computing. 2023;27(3):751–765. Available from: https://doi.org/10.1007/s00779-020-01519-8
  13. Choudhary A, Ahlawat S, Urooj S, Pathak N, Lay-Ekuakille A, Sharma N. A Deep Learning-Based Framework for Retinal Disease Classification. Healthcare. 2023;11(2):1–17. Available from: https://doi.org/10.3390/healthcare11020212
  14. Aamir M, Irfan M, Ali T, Ali G, Shaf A, Al-Beshri A, et al. An Adoptive Threshold-Based Multi-Level Deep Convolutional Neural Network for Glaucoma Eye Disease Detection and Classification. Diagnostics. 2020;10(8):1–15. Available from: https://doi.org/10.3390/diagnostics10080602
  15. Li L, Xu M, Liu H, Li Y, Wang X, Jiang L, et al. A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Transactions on Medical Imaging. 2020;39(2):413–424. Available from: https://doi.org/10.1109/TMI.2019.2927226
  16. Vellakani S, Pushbam I. An enhanced OCT image captioning system to assist ophthalmologists in detecting and classifying eye diseases. Journal of X-Ray Science and Technology. 2020;28(5):975–988. Available from: https://doi.org/10.3233/xst-200697
  17. Khan MS, Tafshir N, Alam KN, Dhruba AR, Khan MM, Albraikan AA, et al. Deep Learning for Ocular Disease Recognition: An Inner-Class Balance. Computational Intelligence and Neuroscience. 2022;2022:1–13. Available from: https://doi.org/10.1155/2022/5007111
  18. Sengar N, Joshi RC, Dutta MK, Burget R. EyeDeep-Net: a multi-class diagnosis of retinal diseases using deep neural network. Neural Computing and Applications. 2023;35(14):10551–10571. Available from: https://doi.org/10.1007/s00521-023-08249-x


© 2024 Rashid et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.