• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 16, Pages: 1283-1295

Original Article

Numerical study on the temporal changes of the principal stresses at the ends of the hollow PC-girders to control horizontal end cracks

Received Date:22 December 2020, Accepted Date:25 February 2021, Published Date:07 May 2021


Background/Objectives: To professionally meet bridge load demands, hollow PC-girders are recently considered for bridge construction, particularly in Japan. Hollow girders are pretensioned girders, which can be a good alternative for ordinary PC-girders by having lightweight, using less material than other beams, and spanning long distances. Hollow PC-girders can be vulnerable to horizontal end cracking at the time of prestressing strand release. Methods: In this study, a nonlinear finite element analysis was performed to investigate the occurrence of horizontal cracks at the time of prestressing at the ends of hollow PC-girders. First, the selected hollow girder was miniaturized to a span length of 4 m required for sufficiently prestressing; then, a standard static prestressing analysis was performed using a finite element analysis software Midas FEA. This software is an analysis tool with standard FEM analysis functions in the construction field and can perform detailed analysis for reinforcements and concrete crack analysis. The software was used to model the girder and investigate the temporal changes of principal stresses at hollow PC-girders’ ends. Findings: The study showed that placing only end-zone reinforcements cannot reduce principal stresses to the level to be less than the concrete’s tensile strength. However, debonding four PC-strands at the ends of the girder alongside the placement of end-zone reinforcements could sufficiently reduce principal stresses to the level to be less than the tensile strength of concrete, and consequently, horizontal cracks were eliminated at the ends of the hollow PC-girder.

Keywords: Horizontal cracks; pretensioned girders; hollow PCgirders; finite element analysis; Midas FEA


  1. Nilson AH. Design of Prestressed Concrete. New York. John Wiley and Sons. 1987.
  2. Kizilarslan E, Okumus P, Oliva MG. Debonding strands as an anchorage zone crack control method for pretensioned concrete bulb-tee girders. PCI Journal. 2020;65(5):65–80. Available from: https://dx.doi.org/10.15554/pcij65.5-04
  3. Tadros MK, Badie SS, Tuan CY. Transportation Research Board. 2010.
  4. Maghsoudi M, Maghsoudi AA. Finite Element and Experimental Investigation on the Flexural Response of Pre-tensioned T-Girders. International Journal of Civil Engineering. 2019;17(5):541–553. doi: 10.1007/s40999-018-0290-3
  5. Harries KA, Shahrooz BM, Ross BE, Ball P, Trey HR. Modeling and Detailing Pretensioned Concrete Bridge Girder End Regions Using the Strut-and-Tie Approach. Journal of Bridge Engineering. 2019;24(3). Available from: https://dx.doi.org/10.1061/(asce)be.1943-5592.0001354
  6. Okumus P, Oliva MG, Becker S. Nonlinear finite element modeling of cracking at ends of pretensioned bridge girders. Engineering Structures. 2012;40:267–275. Available from: https://dx.doi.org/10.1016/j.engstruct.2012.02.033
  7. Okumus P, Kristam RP, Arancibia MD. Sources of Crack Growth in Pretensioned Concrete-Bridge Girder Anchorage Zones after Detensioning. Journal of Bridge Engineering. 2016;21(10). Available from: https://dx.doi.org/10.1061/(asce)be.1943-5592.0000928
  8. Van Meirvenne K, De Corte W, Boel V, Taerwe L. Non-linear 3D finite element analysis of the anchorage zones of pretensioned concrete girders and experimental verification. Engineering Structures. 2018;172:764–779. doi: 10.1016/j.engstruct.2018.06.065
  9. Kannel J, French C, Stolarski H. Release Methodology of Strands to Reduce End Cracking in Pretensioned Concrete Girders. PCI Journal. 1997;42(1):42–54. Available from: https://dx.doi.org/10.15554/pcij.01011997.42.54
  10. Crispino ED, Cousins TE, Roberts-Wollmann CL. Anchorage zone design for pretensioned precast bulb-T bridge girders in Virginia. Virginia Center for Transportation Innovation and Research. 2009.
  11. Gergely P, Sozen MA. Design of Anchorage-Zone Reinforcement in Prestressed Concrete Beams. PCI Journal. 1967;12(2):63–75. Available from: https://dx.doi.org/10.15554/pcij.04011967.63.75
  12. Tan KH, Tong K, Tang CY. Direct Strut-and-Tie Model for Prestressed Deep Beams. Journal of Structural Engineering. 2001;127(9):1076–1084. Available from: https://dx.doi.org/10.1061/(asce)0733-9445(2001)127:9(1076)
  13. Arab A, Badie SS, Manzari MT, Khaleghi B, Seguirant SJ, Chapman D. Analytical Investigation and Monitoring of End-Zone Reinforcement of the Alaskan Way Viaduct Super Girders. PCI Journal. 2014;59(2):109–128. Available from: https://dx.doi.org/10.15554/pcij.03012014.109.128
  14. Ronanki VS, Burkhalter DI, Aaleti S, Song W, Richardson JA. Experimental and analytical investigation of end zone cracking in BT-78 girders. Engineering Structures. 2017;151:503–517. Available from: https://dx.doi.org/10.1016/j.engstruct.2017.08.014
  15. Ross BE, Willis MD, Hamilton HR, Consolazio GR. Comparison of details for controlling end-region cracks in precast, pretensioned concrete I-girders. PCI Journal. 2014;59(2):96–108. Available from: https://dx.doi.org/10.15554/pcij.03012014.96.108
  16. O’callaghan MR, Bayrak O. Tensile Stresses in the End Regions of Pretensioned I-Beams at Release. University of Texas thesis
  17. Karimi AK, Aasim BA, Tomiyama J, Aydan Ö. Control of horizontal cracking at the ends of pretensioned hollow type BS12 PC-girder utilizing FEA. International Journal of Technical Research and Applications. 2017;5:63–66.
  18. Aasim BA, Karimi AK, Tomiyama J, Aydan Ö. Numerical verification of accelerometer-based assessment of hollow-type pretensioned concrete girder. Asian Journal of Civil Engineering. 2020;21(3):437–447. Available from: https://dx.doi.org/10.1007/s42107-019-00219-w
  19. Hasenkamp CJ, Badie, Sameh S, Tuan CY, Tadros, Maher K. CIVIL ENGINEERING FACULTY PROCEEDINGS & PRESENTATIONS Sources of End Zone Cracking of Pretensioned Concrete Girders. In: Civil Engineering Faculty Proceedings & Presentations.. 2008.
  20. Karimi AK, Jaheed AB, Aasim BA, Farooqi JA. Structural Condition and Deficiencies of Present Constructed Bridges over Zahirshahi Canal and Proposal of New Design Using AASHTO Codes. World Journal of Engineering and Technology. 2019;07(02):325–332. Available from: https://dx.doi.org/10.4236/wjet.2019.72023
  21. Siddharth RR, . Stresses In The End Zones Of Precast Inverted T-Beams With Tapered Webs. Wayne State University thesis
  22. Tuan CY, Yehia SA, Jongpitaksseel N, Tadros MK. End-zone reinforcement for pretensioned concrete girders. PCI Journal. 2004;49(3):68. Available from: https://digitalcommons.unomaha.edu/civilengfacpub/1
  23. Dunkman DA, Hovell CG, Moore AM, Avendano A, Bayrak O, Jirsa JO. Bursting and Spalling in Pretensioned Concrete Beams. In: Third International fib Congress and PCI Annual Convention & Bridge Conference: Proceedings. PCI. 2010.
  24. Okumus P, Oliva MG. Strand debonding for pretensioned bridge girders to control end cracks. ACI Structural Journal. 2014;111(1):201.
  25. Aasim BA, Karimi AK, Tomiyama J, Aydan Ö. Detection of damage in concrete structure via shifts in natural frequency. International Journal of Technical Research & Applications. 2017;5(4):48–52.
  26. Karimi AK, Aasim BA, Tomiyama J, Suda Y, Aydan Ö, Kaneda K. Experimental and numerical studies on the control of horizontal cracking at the ends of hollow-type pretensioned girders. SN Applied Sciences. 2020;2(10):1–17. Available from: https://dx.doi.org/10.1007/s42452-020-03461-z
  27. Standard Specifications for Concrete Structures. Tokyo, Japan. Japan Society of Civil Engineers. 2007.
  28. Martí-Vargas JR, Serna P, Navarro-Gregori J, Pallarés L. Bond of 13mm prestressing steel strands in pretensioned concrete members. Engineering Structures. 2012;41:403–412. Available from: https://dx.doi.org/10.1016/j.engstruct.2012.03.056
  29. Ramirez-Garcia AT, Dang CN, Hale WM, Martí-Vargas JR. A higher-order equation for modeling strand bond in pretensioned concrete beams. Engineering Structures. 2017;131:345–361. Available from: https://dx.doi.org/10.1016/j.engstruct.2016.10.050
  30. Sabău M, Pop I, Oneţ T. Experimental study on local bond stress-slip relationship in self-compacting concrete. Materials and Structures. 2016;49(9):3693–3711. Available from: https://dx.doi.org/10.1617/s11527-015-0749-5
  31. Casanova A, Jason L, Davenne L. Bond slip model for the simulation of reinforced concrete structures. Engineering Structures. 2012;39:66–78. Available from: https://dx.doi.org/10.1016/j.engstruct.2012.02.007


© 2021 Karimi et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.