• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 19, Pages: 1947-1960

Original Article

Optimizing Breast Cancer Detection: Deep Transfer Learning Empowered by SVM Classifiers

Received Date:05 January 2024, Accepted Date:10 April 2024, Published Date:03 May 2024


Objectives: The research aims to enhance breast cancer detection accuracy and effectiveness using deep transfer learning and pre-trained neural networks. It analyses breast ultrasound images and identifies important characteristics using pre-trained networks. The goal is to create a more efficient and accurate automated system for breast cancer detection. Methods: The study uses breast ultrasound cancer image data from the Kaggle Data Repository to extract informative features, identify cancer-related characteristics, and classify them into benign, malignant, and normal tissue. Pre-trained Deep Neural Networks (DNNs) extract these features and feed them into a 10-fold cross-validation SVM classifier. The SVM is evaluated using various kernel functions to identify the best kernel for separating data points. This methodology aims to achieve accurate classification of breast cancer in ultrasound images. Findings: The study confirms the effectiveness of deep transfer learning for breast cancer detection in ultrasound images, with Inception V3 outperforming VGG-16 and VGG-19 in extracting relevant features. The combination of Inception V3 and the SVM classifier with a polynomial kernel achieved the highest classification accuracy, indicating its ability to model complex relationships. The study demonstrated an AUC of 0.944 and a classification accuracy of 87.44% using the Inception V3 + SVM polynomial. Novelty: This research demonstrates the potential of deep transfer learning and SVM classifiers for accurate breast cancer detection in ultrasound images. It integrates Inception V3, VGG-16, and VGG-19 for breast cancer detection, demonstrating improved classification accuracy. The combination of Inception V3 and SVM (polynomial) achieved a significant AUC (0.944) and classification accuracy (87.44%), outperforming other models tested. This research underscores the potential of these technologies for accurate breast cancer detection in ultrasound images.

Keywords: Breast Cancer, Deep Learning, Feature Extraction, Inception-v3, SVM, Transfer Learning


  1. Breast Cancer. Cleveland Clinic. Available from: https://my.clevelandclinic.org/health/diseases/3986-breast-cancer (accessed )
  2. Breast cancer . World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed )
  3. Sivarajah RT, Brown K, Chetlen A. “I can see clearly now.” fundamentals of breast ultrasound optimization. Clinical Imaging. 2020;64:124–135. Available from: https://dx.doi.org/10.1016/j.clinimag.2020.03.012
  4. Yurttakal AH, Erbay H, İkizceli T, Karaçavuş S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimedia Tools and Applications. 2020;79(21-22):15555–15573. Available from: https://dx.doi.org/10.1007/s11042-019-7479-6
  5. Alsolami AS, Shalash W, Alsaggaf W, Ashoor S, Refaat H, Elmogy M. King Abdulaziz University Breast Cancer Mammogram Dataset (KAU-BCMD) Data. 2021;6(11):1–15. Available from: https://dx.doi.org/10.3390/data6110111
  6. Zhu W, Xie L, Han J, Guo X. The Application of Deep Learning in Cancer Prognosis Prediction. Cancers. 2020;12(3):1–19. Available from: https://dx.doi.org/10.3390/cancers12030603
  7. Tufail AB, Ma YK, Kaabar MKA, Martínez F, Junejo AR, Ullah I, et al. Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions. Computational and Mathematical Methods in Medicine. 2021;2021:1–28. Available from: https://dx.doi.org/10.1155/2021/9025470
  8. Kourou K, Exarchos KP, Papaloukas C, Sakaloglou P, Exarchos T, Fotiadis DI. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Computational and Structural Biotechnology Journal. 2021;19:5546–5555. Available from: https://dx.doi.org/10.1016/j.csbj.2021.10.006
  9. Tang B, Pan Z, Yin K, Khateeb A. Recent Advances of Deep Learning in Bioinformatics and Computational Biology. Frontiers in Genetics. 2019;10:1–10. Available from: https://dx.doi.org/10.3389/fgene.2019.00214
  10. Kang SY, Kim YS, Kim Z, Kim HY, Kim HJ, Park S, et al. Breast Cancer Statistics in Korea in 2017: Data from a Breast Cancer Registry. Journal of Breast Cancer. 2020;23(2):115–128. Available from: https://dx.doi.org/10.4048/jbc.2020.23.e24
  11. Lane WO, Thomas SM, Blitzblau RC, Plichta JK, Rosenberger LH, Fayanju OM, et al. Surgical Resection of the Primary Tumor in Women With De Novo Stage IV Breast Cancer. Annals of Surgery. 2019;269(3):537–544. Available from: https://dx.doi.org/10.1097/sla.0000000000002621
  12. Vicini FA, Cecchini RS, White JR, Arthur DW, Julian TB, Rabinovitch RA, et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: a randomised, phase 3, equivalence trial. The Lancet. 2019;394(10215):2155–2164. Available from: https://dx.doi.org/10.1016/s0140-6736(19)32514-0
  13. Balic M, Thomssen C, Würstlein R, Gnant M, Harbeck N. St. Gallen/Vienna 2019: A Brief Summary of the Consensus Discussion on the Optimal Primary Breast Cancer Treatment. Breast Care. 2019;14(2):103–110. Available from: https://dx.doi.org/10.1159/000499931
  14. Wu WJ, Lin SW, Moon WK. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images. Computerized Medical Imaging and Graphics. 2012;36(8):627–633. Available from: https://dx.doi.org/10.1016/j.compmedimag.2012.07.004
  15. Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications. 2021;167. Available from: https://dx.doi.org/10.1016/j.eswa.2020.114161
  16. Fei X, Zhou S, Han X, Wang J, Ying S, Chang C, et al. Doubly supervised parameter transfer classifier for diagnosis of breast cancer with imbalanced ultrasound imaging modalities. Pattern Recognition. 2021;120. Available from: https://dx.doi.org/10.1016/j.patcog.2021.108139
  17. Vakanski A, Xian M, Freer PE. Attention-Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound Images. Ultrasound in Medicine & Biology. 2020;46(10):2819–2833. Available from: https://dx.doi.org/10.1016/j.ultrasmedbio.2020.06.015
  18. Vital TP, Kumar KD, Sri HVB, Krishna MM. Analysis of Cancer Data Set with Statistical and Unsupervised Machine Learning Methods. In: Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Smart Innovation, Systems and Technologies . (Vol. 104, pp. 267-276) Singapore. Springer. 2019.
  19. Rao KS, Terlapu PV, Jayaram D, Raju KK, Kumar GK, Pemula R, et al. Intelligent Ultrasound Imaging for Enhanced Breast Cancer Diagnosis: Ensemble Transfer Learning Strategies. IEEE Access. 2024;12:22243–22263. Available from: https://dx.doi.org/10.1109/access.2024.3358448
  20. Vesal S, Ravikumar N, Davari A, Ellmann S, Maier A. Classification of Breast Cancer Histology Images Using Transfer Learning. In: International Conference Image Analysis and Recognition, Lecture Notes in Computer Science. (Vol. 10882, pp. 812-819) Springer, Cham. 2018.


© 2024 Rao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.