• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 36, Pages: 2965-2972

Original Article

Oxacalix[4]arene Based “Turn-off Florescence Sensor” for Selective and Sensitive Screening of 4-Nitrotoluene: Insight from Spectrophotometry and Spectrofluorometry

Received Date:11 April 2023, Accepted Date:17 August 2023, Published Date:27 September 2023


Objective: A chemosensor of novel and highly promising nature, namely 5,17-di(2-naphthoylsulphonyl)tetranitrooxacalix[4]arene (DNSTNOC), has been synthesized. This innovative compound exhibits exceptional potential in the domain of molecular screening, particularly in the realm of selective detection of 4-nitrotoluene (4-NT) in comparison to a variety of other explosive compounds. Methods: The receptor that was synthesized underwent characterization through the utilization of H1 NMR, ESI-MS, and IR spectroscopy. In order to detect explosives, spectroscopic and spectrofluorometric techniques were employed. Findings: A novel chemosensor has been successfully synthesized and investigated for its efficacy in detecting 4-nitrotoluene (4-NT) in the presence of various explosives. In order to monitor the host-guest complexation, absorption and emission studies were conducted with different explosives. The electron-withdrawing nitro group of 4-NT readily interacts with the highly conjugated naphthoyl sulphonyl ring, resulting in a significant quenching of the fluorescence intensity of DNSTNOC through photo induced electron transfer (PET). Novelty: The aforementioned innovative chemosensor, namely 5,17-di(2-naphthoylsulphonyl)tetranitrooxacalix[4]arene (DNSTNOC), presents a pragmatic resolution for real-life predicaments, such as the identification of explosive materials. Its exceptional capability to detect 4-nitrotoluene (4-NT) within a linear concentration range of 50 mM to 1 mM is noteworthy.

Keywords: Oxacalix[4]arene; Turnoff fluorescent sensor; 4nitrotoluene; Quenching; Explosives


  1. Cowart A, Brük ML, Žoglo N, Roithmeyer H, Uudsemaa M, Trummal A, et al. Solution- and gas-phase study of binding of ammonium and bisammonium hydrocarbons to oxacalix[4]arene carboxylate. RSC Advances. 2023;13(2):1041–1048. Available from: DOIhttps://doi.org/10.1039/D2RA07614D
  2. Desai V, Panchal M, Dey S, Panjwani F, Jain VK. Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes. Journal of Fluorescence. 2022;32(1):67–79. Available from: https://doi.org/10.1007/s10895-021-02832-y
  3. Wang Z, Cheng H, Zhai TL, Meng X, Zhang C. Altering synthetic fragments to tune the AIE properties and self-assemble grid-like structures of TPE-based oxacalixarenes. RSC Advances. 2015;5(94):76670–76674. Available from: https://doi.org/10.1039/C5RA15214C
  4. Şen S, Önder FC, Çapan R, Ay M. A room temperature acetone sensor based on synthesized tetranitro-oxacalix[4]arenes: Thin film fabrication and sensing properties. Sensors and Actuators A: Physical. 2020;315:112308. Available from: https://doi.org/10.1016/j.sna.2020.112308
  5. Panchal M, Bhatt KD, Modi K, Panchal M. A Review on Recognition of Explosives using Calixarene Framework. Letters in Applied NanoBioScience. 2022;11(1):3093–3101. Available from: https://nanobioletters.com/wp-content/uploads/2021/06/22846808111.30933101.pdf
  6. Sun R, Huo X, Lu H, Feng S, Wang D, Liu H. Recyclable fluorescent paper sensor for visual detection of nitroaromatic explosives. Sensors and Actuators B: Chemical. 2018;265:476–487. Available from: https://doi.org/10.1016/j.snb.2018.03.072
  7. Parikh J, Bhatt K, Patel N, Modi K, Parmar N. Host-guest interaction of tryptophane with acid-functionalized calix[4]pyrrole: a fluorescence-based study. Journal of Biomolecular Structure and Dynamics. 2023;p. 1–8. Available from: https://doi.org/10.1080/07391102.2023.2229448
  8. Martelo LM, Marques LF, Burrows HD, Berberan-Santos MN. Explosives Detection: From Sensing to Response. In: Fluorescence in Industry, Springer Series on Fluorescence. (Vol. 18, pp. 293-320) Springer. 2019.
  9. Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, et al. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chemical Reviews. 2019;119(16):9657–9721. Available from: https://doi.org/10.1021/acs.chemrev.8b00605
  10. Patel N, Modi K, Bhatt K, Mohan B, Parikh J, Liska A, et al. Cyclotriveratrylene (CTV): Rise of an untapped supramolecular prodigy providing a new generation of sensors. Journal of Molecular Structure. 2023;1273:134330. Available from: https://doi.org/10.1016/j.molstruc.2022.134330
  11. Gruznov VM, Baldin MN, Efimenko AP, Maksimov EM, Naumenko II, Pronin VG. Rapid gas-chromatographic determination of marking agents added to the industrial plastic explosives in air. Journal of Analytical Chemistry. 2015;70:207–212. Available from: https://doi.org/10.1134/S1061934814120053
  12. Panchal U, Modi K, Dey S, Prajapati U, Patel C, Jain VK. A resorcinarene-based “turn-off” fluorescence sensor for 4-nitrotoluene: Insights from fluorescence and 1 H NMR titration with computational approach. Journal of Luminescence. 2017;184:74–82. Available from: https://doi.org/10.1016/j.jlumin.2016.11.066
  13. Ramalingam S, Periandy S, Govindarajan M, Mohan S. FTIR and FTRaman spectra, assignments, ab initio HF and DFT analysis of 4-nitrotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010;75(4):1308–1314. Available from: https://doi.org/10.1016/j.saa.2009.12.072
  14. Yu Y, Lan W, Wang X, Gao M, Yang R, Wang D, et al. Photophysical Properties of Naphthalene-oxacalix[m]arene and Recognition of Fullerene C60. ACS Omega. 2022;7(18):15411–15422. Available from: https://doi.org/10.1021/acsomega.1c07068
  15. Cottet K, Marcos PM, Cragg PJ. Fifty years of oxacalix[3]arenes: A review. Beilstein Journal of Organic Chemistry. 2012;8:201–226. Available from: https://doi.org/10.3762/bjoc.8.22
  16. Vora M, Panchal M, Dey S, Pandya A, Athar M, Verma N, et al. Oxacalix[4]arene based dual-signalling fluorimetric and electrochemical chemosensor for the selective detection of nitroaromatic compounds. Journal of Molecular Liquids. 2022;362:119791. Available from: https://doi.org/10.1016/j.molliq.2022.119791
  17. Desai AL, Patel NP, Parikh JH, Modi KM, Bhatt KD. In Silico Studies and Design of Scrupulous Novel Sensor for Nitro Aromatics Compounds and Metal Ions Detection. Journal of Fluorescence. 2022;32:483–504. Available from: https://doi.org/10.1007/s10895-021-02866-2
  18. Panchal M, Kongor A, Athar M, Modi K, Patel C, Dey S, et al. Structural motifs of oxacalix[4]arene for molecular recognition of nitroaromatic explosives: Experimental and computational investigations of host-guest complexes. Journal of Molecular Liquids. 2020;306:112809. Available from: https://doi.org/10.1016/j.molliq.2020.112809
  19. Mehta V, Athar M, Jha PC, Kongor A, Panchal M, Jain VK. A turn-off fluorescence sensor for insensitive munition using anthraquinone-appended oxacalix[4]arene and its computational studies. New Journal of Chemistry. 2017;41(12):5125–5132. Available from: https://doi.org/10.1039/C7NJ01111C


© 2023 Panchal & Bhatt. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.