• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2016, Volume: 9, Issue: 21, Pages: 1-8

Original Article

Preparation of Aluminium Alloy Metal Nanoparticles by Liquid Pulsed-Laser Ablation

Abstract

Background/Objectives: Nanotechnology has been stated in Malaysia New Economic Model and widely used in much application. The article focuses on nanoparticle formation using liquid pulsed-laser ablation technique. Methods: There are two methods have been used to produce the metal nanoparticles namely breakdown and build up method. In this article, the pulse laser ablation (build up method) has been used to generate the metal nanoparticles whereby the metal target is immersed in ultra-pure water. The Al alloy metal nanoparticles were studied using two laser parameters namely laser exposure time and laser power. Findings: The above mentioned method identified can generate the metal nanoparticles. The longer laser exposure time with higher power contribute higher weight loss of the Al metal. The new incoming black dots were detected on the surface of Al alloy metal samples that were shot by a laser beam. It was contributed to the formation of instabilities plasma on the metal surface towards Al nanostructures ejection. The average weight of a mass loss of Al alloy increases with the exposure time of laser shot was increases. It was shown that average of mass loss of Al metal alloy increased dramatically from the 30 second to 60 second at laser power of 1 watt. However, the higher ablation condition of 3 watt for 180s forms the bigger particle size of 900 nm and more. Conclusion/Application: At the condition of 3 watts for 30s, smaller particles size ranging of 76-1281 nm has been formed. The higher power and exposure time subsequently increase the size and homogeneity
Keywords: Aluminium Alloy, Liquid Pulsed-Laser Ablation, Metal Nanoparticles, Particles Size, Surface Morphology

DON'T MISS OUT!

Subscribe now for latest articles and news.