• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 41, Pages: 2143-2150

Original Article

Preparation of Novel Triangular Prism e -Zn(OH)2 by the Facile Precipitation Route for the Photocatalysis Under Visible Light

Received Date:30 June 2022, Accepted Date:23 September 2022, Published Date:03 November 2022


Objective: This study aims to decompose antibiotic of tetracycline hydrochloride (TCH) in aqueous medium by photocatalysis under the visible light irradiation. Method: Photocatalyst e -Zn(OH)2 was synthesized by facile precipitation method from an aqueous containing zinc nitrate, using trisodium citrate dihydrate. The characterization of as-prepared material was confirmed by XRD, SEM, FI-IR, and UV-Vis-DR. The catalytic performance of catalyst was evaluated by batch reaction. Finding: e -Zn(OH)2 has an orthorhombic structure with a length prism of 5-7 mm and triangle angles of 56.92, 69.46, and 66.71o e -Zn(OH)2 has been shown to efficiently degrade tetracycline hydrochloride. The degradation efficiency (DE) and reaction rate at the TCH concentration of 5 mg/L were the highest, exhibiting 89.51% and 0.120 min-1, respectively. The alkaline medium was an appropriate condition for degradation of TCH on catalyst. Application/Improvement: e -Zn(OH)2 was synthesized by the facile precipitation method, it has relatively strong photocatalytic ability for applying in treatment of medical wastewater. Novelty: Novel triangular prism e -Zn(OH)2 was prepared for photocatalysis. The relationship between structure and catalytic efficiency was investigated in detail. In addition, the photocatalytic mechanism of TCH on e -Zn(OH)2 has been proposed.

Keywords: Photocatalyst; Zn(OH) 2; Tetracycline hydrochloride; Degradation; Kinetic


  1. Hoslett J, Ghazal H, Katsou E, Jouhara H. The removal of tetracycline from water using biochar produced from agricultural discarded material. Science of The Total Environment. 2021;2021(751):141755. Available from: https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141755.
  2. Yang J, Han L, Yang W, Liu Q, Fei Z, Chen X, et al. In situ synthetic hierarchical porous MIL-53(Cr) as an efficient adsorbent for mesopores-controlled adsorption of tetracycline. Microporous and Mesoporous Materials. 2022;332(111667). Available from: https://doi.org/https://doi.org/10.1016/j.micromeso.2021.111667.
  3. Żyłła R, Ledakowicz S, Boruta T, Olak-Kucharczyk M, Foszpańczyk M, Mrozińska Z, et al. Removal of Tetracycline Oxidation Products in the Nanofiltration Process. Water. 2021;13(4):555. Available from: https://doi.org/10.3390/w13040555
  4. Zhang S, Zheng K, Xu G, Liang B, Yin Q. Enhanced removal of tetracycline via advanced oxidation of sodium persulfate and biochar adsorption. Environmental Science and Pollution Research. 2022;29(48):72556–72567. Available from: https://doi.org/10.1007/s11356-022-20817-7
  5. Li Y, Zhang Q, Lu Y, Song Z, Wang C, Li D, et al. Surface hydroxylation of TiO2/g-C3N4 photocatalyst for photo-Fenton degradation of tetracycline. Ceramics International. 2022;48(1):1306–1313. Available from: https://doi.org/https://doi.org/10.1016/j.ceramint.2021.09.215.
  6. He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environmental Chemistry Letters. 2021;19(6):4563–4601. Available from: https://doi.org/10.1007/s10311-021-01295-8.
  7. Rocha RLP, Honorio LMC, Bezerra RDDS, Trigueiro P, Duarte TM, Fonseca MG, et al. Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants. Minerals. 2022;12(5):525. Available from: https://doi.org/10.3390/min12050525
  8. Yang Y, Meng S, Zheng X, Wu H, Fu X, Chen S. The morphology and photocatalytic performance of Zn(OH)F under different synthetic conditions. Journal of Fluorine Chemistry. 2020;237(109600). Available from: https://doi.org/https://doi.org/10.1016/j.jfluchem.2020.109600
  9. Donia DT, Bauer EM, Missori M, Roselli L, Cecchetti D, Tagliatesta P, et al. Room Temperature Syntheses of ZnO and Their Structures. 2021;13(733). Available from: https://doi.org/10.3390/sym13040733
  10. Pham TAT, Tran VA, Le VD, Nguyen MV, Truong DD, Do XT, et al. Facile Preparation of ZnO Nanoparticles and Ag/ZnO Nanocomposite and Their Photocatalytic Activities under Visible Light. International Journal of Photoenergy. 2020;2020:1–14. Available from: https://doi.org/10.1155/2020/8897667
  11. Cheng J, Xie Y, Wei Y, Xie D, Sun W, Zhang Y, et al. Degradation of tetracycline hydrochloride in aqueous via combined dielectric barrier discharge plasma and Fe–Mn doped AC. Chemosphere. 2022;286(131841). Available from: https://doi.org/10.1016/j.chemosphere.2021.131841.
  12. Uribe-López MC, Hidalgo-López MC, López-González R, Frías-Márquez DM, Núñez-Nogueira G, Hernández-Castillo D, et al. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. Journal of Photochemistry and Photobiology A: Chemistry. 2021;404(112866). Available from: https://doi.org/https://doi.org/10.1016/j.jphotochem.2020.112866.
  13. Jiang H, Wang Q, Chen P, Zheng H, Shi J, Shu H, et al. Photocatalytic degradation of tetracycline by using a regenerable (Bi)BiOBr/rGO composite. Journal of Cleaner Production. 2022;339(130771). Available from: https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130771
  14. He Z, Siddique MS, Yang H, Xia Y, Su J, Tang B, et al. Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. Journal of Cleaner Production. 2022;339(130634). Available from: https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130634.
  15. Ari H, Adewole AO, Ugya AY, Asipita OH, Musa MA, Feng W. Biogenic fabrication and enhanced photocatalytic degradation of tetracycline by bio structured ZnO nanoparticles. Environmental Technology. 2021;p. 1–16. Available from: https://doi.org/10.1080/09593330.2021.2001049
  16. Lopes OF, Mendonça VRD, Umar A, Chuahan MS, Kumar R, Chauhan S, et al. Zinc hydroxide/oxide and zinc hydroxy stannate photocatalysts as potential scaffolds for environmental remediation. New Journal of Chemistry. 2015;39(6):4624–4630. Available from: https://doi.org/10.1039/C5NJ00324E
  17. Faheem M, Siddiqi HM, Habib A, Shahid M, Afzal A. ZnO/Zn(OH)2 nanoparticles and self-cleaning coatings for the photocatalytic degradation of organic pollutants. Frontiers in Environmental Science. 2022;10:1–09. Available from: https://doi.org/https://doi.org/10.3389/fenvs.2022.965925


© 2022 Hoang & Vu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.