• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 19, Pages: 1565-1573

Original Article

Rapid Synthesis of SnO2 Thin Films using Monoethanolamine through Wet Chemical Route

Received Date:08 April 2021, Accepted Date:11 May 2021, Published Date:29 May 2021

Abstract

Objectives: To develop a unique wet chemical process for the rapid synthesis of SnO2 thin films and hence to study the structural, morphological, optical and electrical properties of the films. Methods/Analysis: Polycrystalline SnO2 thin films having a thickness in the range of 800-1000 nm with crystallite size less than 5 nm were synthesized within a time of 20 minutes and without the need of post-annealing using SILAR technique. Lattice parameters, c/a ratio, cell volume, dislocation density, refractive index, extinction coefficient and porosity of the SnO2 thin films were determined. Findings: Films have a coarse and porous surface morphology with very fine pores distributed nearly uniformly on the film surface. The crystallite size and strain developed in the SnO2 films were computed by the Williamson-Hall technique. Microstrain developed in the films is of the order of 10-3. SnO2 films exhibit nearly 70% transmittance in the visible region. The optical band gap of the SnO2 films is 3.65 eV. The refractive index of the films varies from 2.05 to 2.30 in the 450-1900 nm wavelength range. SnO2 films exhibit a resistivity in the order of 10-1 Ωcm. Novelty: Reports a unique rapid wet chemical process for the direct preparation of crystalline SnO2 thin films using monoethaolamine at a temperature of 800C. Literature survey reveals that no other method has yielded such type of good quality SnO2 thin films at this temperature and without post annealing or sintering. First time crystalline SnO2 films were prepared by a wet chemical process within 20 minutes.

Keywords: SnO2 films; SILAR; Monoethanolamine; Strain; Optical band gap

References

  1. Jadhav H, Suryawanshi S, More MA, Sinha S. Pulsed laser deposition of tin oxide thin films for field emission studies. Applied Surface Science. 2017;419:764–769. Available from: https://dx.doi.org/10.1016/j.apsusc.2017.05.020
  2. Kamble DL, Harale NS, Patil VL, Patil PS, Kadam LD. Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. Journal of Analytical and Applied Pyrolysis. 2017;127:38–46. Available from: https://dx.doi.org/10.1016/j.jaap.2017.09.004
  3. Sharma B, Sharma A, Joshi M, Myung Jh. Sputtered SnO2/ZnO Heterostructures for Improved NO2 Gas Sensing Properties. Chemosensors. 2020;8(3):67. Available from: https://dx.doi.org/10.3390/chemosensors8030067
  4. Ponja SD, Williamson BAD, Sathasivam S, Scanlon DO, Parkin IP, Carmalt CJ. Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. Journal of Materials Chemistry C. 2018;6(27):7257–7266. Available from: https://dx.doi.org/10.1039/c8tc01929k
  5. Tao H, Ma Z, Yang G, Wang H, Long H, Zhao H, et al. Pingli Qin,Guojia Fang. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells. Applied Surface Science. 2018;434:1336–1343. Available from: . https://doi.org/10.1016/j.apsusc.2017.11.161
  6. Ingole SM, Navale ST, Navale YH, Bandgar DK, Stadler FJ, Mane RS, et al. Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties. Journal of Colloid and Interface Science. 2017;493:162–170. Available from: https://dx.doi.org/10.1016/j.jcis.2017.01.025
  7. Hunashimarad BG, Bhat JS, Raghavendra PV, Bhajantri RF. Photoluminescence in Strontium doped tin oxide thin films. Optical Materials. 2021;114(110962). Available from: https://dx.doi.org/10.1016/j.optmat.2021.110962
  8. Abdullah N, Ismail NM, Nuruzzaman DM. Preparation of tin oxide (SnO2) thin films using thermal oxidation. IOP Conference Series: Materials Science and Engineering. 2018;319(012022). Available from: https://dx.doi.org/10.1088/1757-899x/319/1/012022
  9. ELANGOVAN E, SINGH M, RAMAMURTHI K. Studies on structural and electrical properties of spray deposited SnO2:F thin films as a function of film thickness. Materials Science and Engineering B. 2004;113(2):143–148. doi: 10.1016/s0921-5107(04)00385-x
  10. Misra M, Hwang DK, Kim YC, Myoung JM, Lee TI. Eco-friendly method of fabricating indium-tin-oxide thin films using pure aqueous sol-gel. Ceramics International. 2018;44(3):2927–2933. Available from: https://dx.doi.org/10.1016/j.ceramint.2017.11.041
  11. Asadzadeh M, Tajabadi F, Dastan D, Sangpour P, Shi Z, Taghavinia N. Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications. Ceramics International. 2021;47(4):5487–5494. Available from: https://dx.doi.org/10.1016/j.ceramint.2020.10.131
  12. Pathan HM, Lokhande CD. Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science. 2004;27(2):85–111. Available from: https://dx.doi.org/10.1007/bf02708491
  13. Shariffudin SS, Herman SH, Rusop M. Layer-by-Layer Nanoparticles ZnO Thin Films Prepared by Sol-Gel Method. Advanced Materials Research. 2011;(403-408) 1178–1182. Available from: https://dx.doi.org/10.4028/www.scientific.net/amr.403-408.1178
  14. Nowak P, Maziarz W, Rydosz A, Kowalski K, Ziąbka M, Zakrzewska K. SnO2/TiO2 Thin Film n-n Heterostructures of Improved Sensitivity to NO2. Sensors. 2020;20(23). Available from: https://dx.doi.org/10.3390/s20236830
  15. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica. 1953;1(1):22–31. Available from: https://dx.doi.org/10.1016/0001-6160(53)90006-6
  16. Wang XS, Wu ZC, Webb JF, Liu ZG. Ap Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition. Applied Physics. 2003;77:561–565. Available from: https://doi.org/10.1007/s00339-002-1497-2
  17. Vincent A, Babu S, Brinley E, Karakoti A, Deshpande S, Seal S. Role of Catalyst on Refractive Index Tunability of Porous Silica Antireflective Coatings by Sol−Gel Technique. The Journal of Physical Chemistry C. 2007;111(23):8291–8298. Available from: https://dx.doi.org/10.1021/jp0700736
  18. Navidpour AH, Fakhrzad M, Tahari M, Abbasi S. Novel photocatalytic coatings based on tin oxide semiconductor. Surface Engineering. 2019;35(3):216–226. Available from: https://dx.doi.org/10.1080/02670844.2018.1477559
  19. Deyu GK, Muñoz-Rojas D, Rapenne L, Deschanvres JL, Klein A, Jiménez C, et al. SnO2 Films Deposited by Ultrasonic Spray Pyrolysis: Influence of Al Incorporation on the Properties. Molecules. 2019;24(15). Available from: https://dx.doi.org/10.3390/molecules24152797
  20. Khadraoui M, Benramdane N, Mathieu C, Bouzidi A, Miloua R, Kebbab Z. Optical and electrical properties of thin films grown by spray pyrolysis. Solid State Communications. 2010;150(5-6):297–300. Available from: https://dx.doi.org/10.1016/j.ssc.2009.10.032
  21. Xian S, Nie L, Qin J, Kang T, Li C, Xie J. Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films. Optics Express. 2019;27(20). Available from: https://dx.doi.org/10.1364/oe.27.028618
  22. Czapla A, Kusior E, Bucko M. Optical properties of non-stoichiometric tin oxide films obtained by reactive sputtering. Thin Solid Films. 1989;182(1-2):15–22. Available from: https://dx.doi.org/10.1016/0040-6090(89)90239-3
  23. Wang L, Yu J, Niu X, Wang L, Fu C, Qiu R, et al. Effect of F and Nb co-doping on structural, electrical and optical properties of spray deposited tin oxide thin films. Thin Solid Films. 2018;649:147–153. Available from: https://dx.doi.org/10.1016/j.tsf.2018.01.035
  24. Vinodkumar R, Lethy KJ, Arunkumar PR, Krishnan RR, Pillai NV, Pillai VPM, et al. Effect of cadmium oxide incorporation on the microstructural and optical properties of pulsed laser deposited nanostructured zinc oxide thin films. Materials Chemistry and Physics. 2010;121(3):406–413. Available from: https://dx.doi.org/10.1016/j.matchemphys.2010.01.004
  25. Woo WS, Byeo SH, Jinsung C, Seong BB, Eui-Jung Y. Effects of the Process Parameters on the Properties of Sputter-Deposited Tin Oxide Thin Films. Journal of Nanoscience and Nanotechnology. 2019;19(1):1301–1307. Available from: https://doi.org/10.1166/jnn.2019.16241
  26. Ching-Prado E, Watson A, Miranda H. Optical and electrical properties of fluorine doped tin oxide thin film. Journal of Materials Science: Materials in Electronics. 2018;29(18):15299–15306. Available from: https://dx.doi.org/10.1007/s10854-018-8795-8
  27. Maheswari S, Karunakaran M, Chandrasekar LB, Kasirajan K. Ammonia sensors on the base of gadolinium doped tin oxide thin films and its characterization: Effect of doping concentration. Physica B: Condensed Matter. 2021;602. Available from: https://dx.doi.org/10.1016/j.physb.2020.412477
  28. Kaur M, Dadhich BK, Singh R, Ganapathi SK, Bagwaiya T, Bhattacharya S, et al. RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature. Sensors and Actuators B: Chemical. 2017;242:389–403. Available from: https://dx.doi.org/10.1016/j.snb.2016.11.054
  29. Bhowmick T, Ambardekar V, Ghosh A, Dewan M, Bandyopadhyay PP, Nag S. Multilayered and Chemiresistive Thin and Thick Film Gas Sensors for Air Quality Monitoring. In: Multilayer Thin Films - Versatile Applications for Materials Engineering. Partha Pratim Bandyopadhyay. 2020. 10.5772/intechopen.89710
  30. Park KW, Hur SG, Ahn JK, Seong NJ, Yoon SG. High-Resistivity Thin-Film Resistors Grown Using CrB2-Si-SiC Materials by Radio-Frequency Magnetron Sputtering. IEEE Transactions on Electron Devices. 2010;57(6):1475–1480. Available from: https://doi.org/10.1109/TED.2010.2045673.
  31. Djamil R, Aicha K, Souifi A, Fayçal D. Effect of annealing time on the performance of tin oxide thin films ultraviolet photodetectors. Thin Solid Films. 2017;623:1–7. Available from: https://dx.doi.org/10.1016/j.tsf.2016.12.035

Copyright

© 2021 Murali & Remadevi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.