• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 10, Pages: 858-868

Original Article

Removal of defects in CdO nanoparticle and rapid synthesis of CdO nanoflake using novel microwave technique to improve semiconductor device performance

Received Date:29 December 2020, Accepted Date:14 March 2021, Published Date:02 April 2021


Objective: The objective of this study is to synthesize CdO nanoparticle and nanoflakes both in a single way. Also the purpose of removing defects from semiconductor nanoparticles has been considered. Methods: Very small sized Cadmium oxide nanoparticles (11 – 29 nm) and nanoflakes of average size 70 nm were prepared by sol-gel process. Two solutions of 0.2M CdCl2 and 0.2M NaOH were used with a mixture of 1:2 ethylene glycol and methanol. Two different heating method of dried precipitate was adopted to observe the morphology and defect characteristics. Half of the precipitate was annealed in furnace and rest half in domestic microwave. Findings: The fcc (NaCl-type) structure has been found in the nanostructures with lattice constant varying with annealing temperature. We propose a linear relation for the change in lattice constant. HRTEM pictures show nanoflakes and hexagonal nanoparticles. The ratio curve of coincidence Doppler broadening spectroscopy (CDBS) found defect concentration reduction and agglomeration effect on microwave irradiation in place of furnace annealing. It indicated reduction of defects inside the nanoparticles. The S and W parameter revealed the chemical surroundings and momentum distribution of the vacancy clusters varying with crystallite size. Novelty: Furnace annealing and microwave irradiation showed different effect of surface strain on lattice. Microwave irradiation has been used to reduce defects inside CdO nanocrystals for potential application and coincidence Doppler broadening spectroscopy showed potential to be a very effective tool of defect characterization and electron momentum comparison. Also, this work presents how microwave radiation can be used to prepare nanoflakes and nanoparticles from same reactants without any substrate.

Keywords: Domestic microwave; nanocrystals; positron annihilation; solgel processes


  1. Radi PA, Brito-Madurro AG, Madurro JM, Dantas NO. Characterization and properties of CdO nanocrystals incorporated in polyacrylamide. Brazilian Journal of Physics. 2006;36(2a):412–414. Available from: https://dx.doi.org/10.1590/s0103-97332006000300048
  2. Somasundaram G, Rajan J, Sangaiya P, Dilip R. Hydrothermal synthesis of CdO nanoparticles for photocatalytic and antimicrobial activities. Results in Materials. 2019;4. Available from: https://dx.doi.org/10.1016/j.rinma.2019.100044
  3. Vadgama VS, Vyas RP, Jogia BV, Joshi MJ. Synthesis and characterization of CdO nano particles by the sol-gel method. In: Aip Conference Proceedings. (Vol. 1873) 2017.
  4. Vinogradov AV, Vinogradov VV. Low-temperature sol–gel synthesis of crystalline materials. RSC Adv.. 2014;4(86):45903–45919. Available from: https://dx.doi.org/10.1039/c4ra04454a
  5. Cano-Casanova L, Amorós-Pérez A, Lillo-Ródenas M, Román-Martínez M. Effect of the Preparation Method (Sol-Gel or Hydrothermal) and Conditions on the TiO2 Properties and Activity for Propene Oxidation. Materials. 2018;11(11). Available from: https://dx.doi.org/10.3390/ma11112227
  6. Lazareva SV, Shikina NV, Tatarova LE, Ismagilov ZR. Synthesis of High-Purity Silica Nanoparticles by Sol-Gel Method. Eurasian Chemico-Technological Journal. 2017;19(4). Available from: https://dx.doi.org/10.18321/ectj677
  7. Zahera M, Khan SA, Khan IA, Sharma RK, Sinha N, Al-Shwaiman HA, et al. Cadmium oxide nanoparticles: An attractive candidate for novel therapeutic approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;585:124017. Available from: https://dx.doi.org/10.1016/j.colsurfa.2019.124017
  8. Tawfik WZ, Esmat M, El-Dek SI. Drastic improvement in magnetization of CdO nanoparticles by Fe doping. Applied Nanoscience. 2017;7(8):863–870. Available from: https://dx.doi.org/10.1007/s13204-017-0623-6
  9. Rashidzadeh M, Carbajal-Franco G, Tiburcio-Silver A. Hydrophobic Coatings Composed by Cubic-Shaped CdO Nanoparticles Grown by a Novel and Simple Microwave Method. Journal of Nanoparticles. 2016;2016:1–6. Available from: https://dx.doi.org/10.1155/2016/8389647
  10. Mariammal RN, Susila VM, Ramachandran K. On the Debye-Waller factor and Debye temperature of CdO nanoparticles. Crystal Research and Technology. 2011;46(9). Available from: https://dx.doi.org/10.1002/crat.201100138
  11. Cullity B. Elements of X-ray Diffraction. Reading, Massachusetts. Addison-Wesley Publishing Company: Inc. 1956.
  12. Rajesh N, Kannan JC, Krishnakumar T, Neri G. Microwave Irradiation Effect on Structural, Optical, and Thermal Properties of Cadmium Oxide Nanostructure. Acta Physica Polonica A. 2014;125(5):1229–1235. Available from: https://dx.doi.org/10.12693/aphyspola.125.1229
  13. Selvam NCS, Kumar RT, Yogeenth K, Kennedy LJ, Sekaran G, Vijaya JJ. Simple and rapid synthesis of Cadmium Oxide (CdO) nanospheres by a microwave-assisted combustion method. Powder Technology. 2011;211(2-3):250–255. Available from: https://dx.doi.org/10.1016/j.powtec.2011.04.031
  14. Diehm PM, Ágoston P, Albe K. Size-Dependent Lattice Expansion in Nanoparticles: Reality or Anomaly? ChemPhysChem. 2012;13(10):2443–2454. Available from: https://dx.doi.org/10.1002/cphc.201200257
  15. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica. 1953;1(1):22–31. Available from: https://dx.doi.org/10.1016/0001-6160(53)90006-6
  16. Peng XS, Wang XF, Wang YW, Wang CZ, Meng GW, Zhang LD. Novel method synthesis of CdO nanowires. Journal of Physics D: Applied Physics. 2002;35(20):L101–L104. Available from: https://dx.doi.org/10.1088/0022-3727/35/20/103
  17. Wang Q, Chen Y, Aiyiti A, Zheng M, Li N, Xu X. Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires. Chinese Physics B. 2020;29(8). Available from: https://dx.doi.org/10.1088/1674-1056/ab90f0
  18. Das A, Mandal AC, Roy S, Nambissan PMG. Mn-Doping in NiO Nanoparticles: Defects-Modifications and Associated Effects Investigated Through Positron Annihilation Spectroscopy. Journal of Nanoscience and Nanotechnology. 2016;16(4):4153–4163. Available from: https://dx.doi.org/10.1166/jnn.2016.10963
  19. Ghasemifard M, Ghamari M, Samarin S, Williams JF. Porosity evaluation and positron annihilation study of mesoporous aluminum oxy-hydroxide ceramics. Applied Physics A. 2020;126(6):477–488. Available from: https://dx.doi.org/10.1007/s00339-020-03657-5
  20. Nieminen RM, Manninen MJ. Positrons in Solids Springer Series. In: Hautojarvi P., ed. Topics in Current Physics. (Vol. 12, pp. 145-195) Springer. 1979.
  21. Rajput JK, Pathak TK, Swart HC, Purohit LP. Synthesis of CdO Nanoflowers by Sol‐Gel Method on Different Substrates with Photodetection Application. physica status solidi (a). 2019;216(20). Available from: https://dx.doi.org/10.1002/pssa.201900093
  22. Mano G, Harinee S, Sridhar S, Ashok M, Viswanathan A. Microwave assisted synthesis of ZnO-PbS heterojuction for degradation of organic pollutants under visible light. Scientific Reports. 2020;10(1):2224–2238. Available from: https://dx.doi.org/10.1038/s41598-020-59066-4


© 2021 Das.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.