• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 15, Pages: 689-699

Original Article

Road Traffic Prediction and Optimal Alternate Path Selection Using HBI-LSTM and HV-ABC

Received Date:16 December 2021, Accepted Date:09 March 2022, Published Date:26 April 2022


Objectives: The objective of this work is to monitor and manage the traffic flow, so an Intelligent Transportation System (ITS) is developed that comprises the fundamental information of the real-time traffic flow. Methods: For reducing road Traffic Congestion (TC), this paper proffers an efficient traffic prediction framework and the optimal alternate route selection. The conversion of videos (from surveillance camera) into frames is done, and then pre-processing occurs. Then, for recognizing the traffic on the roadways, the background elimination utilizing Gaussian Mixture Model (GMM) is performed. Next, for identifying the vehicle motion, Motion Estimation (ME) utilizing the Virtual loop-based Lucas-Kanade (VLK) technique is performed. Utilizing the You Only Look Once (YOLO) technique, the frames are segmented centered on the estimated motion for identifying the type of objects on the road. Then, for classifying the traffic centered on the number of objects in the segmented frames, the H-detach optimized Bidirectional Long Short Term Memory (HBI-LSTM) is utilized. The traffic is classified by the classifier as heavy traffic, medium traffic, and low traffic. Findings: Utilizing the Horizontal Vertical cross-search appended Artificial Bee Colony (HV-ABC) optimization algorithm, the optimal alternate paths are chosen from different other routes if the traffic is heavy or medium. Novelty: The experimental outcomes demonstrate that the other top-notch models are outperformed by the proposed framework.

Keywords: Traffic Congestion, Surveillance Videos, Noise Removal, Motion Estimation, Path Selection, Artificial Bee Colony (ABC) Optimization


  1. Sayani S, Nanvani P. Traffic analysis and estimation using deep learning techniques. International Journal of Engineering Research & Technology (IJERT). 2019;8(9):803–807.
  2. Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Transactions on Intelligent Transportation Systems. 2020;21(9):3848–3858. Available from: https://dx.doi.org/10.1109/tits.2019.2935152
  3. Pun L, Zhao P, Liu X. A Multiple Regression Approach for Traffic Flow Estimation. IEEE Access. 2019;7:35998–36009. Available from: https://dx.doi.org/10.1109/access.2019.2904645
  4. Abbas M, Mehboob F, Khan SA, Rauf A, Jiang R. Real Time Fuzzy Based Traffic Flow Estimation and Analysis. In: Advances in Intelligent Systems and Computing. (pp. 472-482) Springer International Publishing. 2019.
  5. Impedovo D, Balducci F, Dentamaro V, Pirlo G. Vehicular Traffic Congestion Classification by Visual Features and Deep Learning Approaches: A Comparison. Sensors. 2019;19(23):5213. Available from: https://dx.doi.org/10.3390/s19235213
  6. Fedorov A, Nikolskaia K, Ivanov S, Shepelev V, Minbaleev A. Traffic flow estimation with data from a video surveillance camera. Journal of Big Data. 2019;6(1):1–15. Available from: https://dx.doi.org/10.1186/s40537-019-0234-z
  7. Cheng HY. Highway Traffic Flow Estimation for Surveillance Scenes Damaged by Rain. IEEE Intelligent Systems. 2018;33(1):64–77. Available from: https://dx.doi.org/10.1109/mis.2018.111144331
  8. Nagy AM, Simon V. Survey on traffic prediction in smart cities. Pervasive and Mobile Computing. 2018;50:148–163. Available from: https://dx.doi.org/10.1016/j.pmcj.2018.07.004
  9. Wu Y, Tan H, Qin L, Ran B, Jiang Z. A hybrid deep learning based traffic flow prediction method and its understanding. Transportation Research Part C: Emerging Technologies. 2018;90:166–180. Available from: https://dx.doi.org/10.1016/j.trc.2018.03.001
  10. Memarian A, Rosenberger JM, Mattingly SP, Williams JC, Hashemi H. An optimization‐based traffic diversion model during construction closures. Computer-Aided Civil and Infrastructure Engineering. 2019;34(12):1087–1099. Available from: https://dx.doi.org/10.1111/mice.12491
  11. Mehboob F, Abbas M, Almotaeryi R, Jiang R, Al-Maadeed S, Bouridane A. Traffic Flow Estimation from Road Surveillance. In: 2015 IEEE International Symposium on Multimedia (ISM). IEEE. 2015.
  12. Appathurai A, Sundarasekar R, Raja C, Alex EJ, Palagan CA, Nithya A. An Efficient Optimal Neural Network-Based Moving Vehicle Detection in Traffic Video Surveillance System. Circuits, Systems, and Signal Processing. 2020;39(2):734–756. Available from: https://dx.doi.org/10.1007/s00034-019-01224-9
  13. Liu X, Zhang D, Zhang T, Cui Y, Chen L, Liu S. Novel best path selection approach based on hybrid improved A* algorithm and reinforcement learning. Applied Intelligence. 2021;51(12):9015–9029. Available from: https://dx.doi.org/10.1007/s10489-021-02303-8
  14. Al-qaness MAA, Abbasi AA, Fan H, Ibrahim RA, Alsamhi SH, Hawbani A. An improved YOLO-based road traffic monitoring system. Computing. 2021;103(2):211–230. Available from: https://dx.doi.org/10.1007/s00607-020-00869-8
  15. Rajagopal BG. Intelligent traffic analysis system for Indian road conditions. International Journal of Information Technology. 2020. Available from: https://dx.doi.org/10.1007/s41870-020-00447-3
  16. Chaudhary S, Indu S, Chaudhury S. Video‐based road traffic monitoring and prediction using dynamic Bayesian networks. IET Intelligent Transport Systems. 2018;12(3):169–176. Available from: https://dx.doi.org/10.1049/iet-its.2016.0336
  17. Han L, Zheng K, Zhao L. Xianbin Wang and Xuemin (Sherman) Shen. Short-term traffic prediction based on deepcluster in large-scale road networks. IEEE Transactions on Vehicular Technology. 2019;68(12):12301–12313. Available from: http://doi.org/ 10.1109/TVT.2019.2947080
  18. Chan AB, Vasconcelos N. Probabilistic Kernels for the Classification of Auto-Regressive Visual Processes. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 2005. Available from: http://doi.org/10.1109/CVPR.2005.279
  19. Chan AB, Vasconcelos N. Classification and retrieval of traffic video using auto-regressive stochastic processes. IEEE Proceedings. Intelligent Vehicles Symposium. 2005. Available from: http://doi.org/10.1109/IVS.2005.1505198


© 2022 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.