• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 29, Pages: 2233-2243

Original Article

Sentiment Analysis Framework of Social Media Text by Feature Extraction and Machine Learning Model

Received Date:21 June 2023, Accepted Date:26 June 2023, Published Date:03 August 2023


Objectives: This research paper aims to analyze sentiment and opinions in online resources like discussion forums, review sites, and blogs. It also compares the effectiveness of three feature extraction techniques (TF-IDF, Word2Vec, and WAM) and evaluates three machine learning algorithms (Naïve Bayes, SVM, and ANN) for sentiment classification to determine the most accurate algorithm. Methods: The study utilizes sentiment-rich datasets from IMDB movie reviews, Yelp reviews, and tweets. Three feature extraction techniques are applied to extract relevant features and patterns from the text. Three machine learning algorithms are implemented to classify sentiments into positive, negative, and neutral categories. Accuracy, precision, recall, and F-measure are used to assess algorithm performance. The model is updated and refined three times to ensure reliability. Findings: The Artificial Neural Network (ANN) algorithm outperforms Naïve Bayes and Support Vector Machines, achieving an impressive accuracy rate of 99.74% for sentiment classification. Precision, recall, and F-measure exceed 98.5% after model refinement, demonstrating the approach’s robustness. The study highlights the potential of sentiment analysis in online resources and emphasizes the ANN’s superior accuracy, providing valuable insights for future sentiment analysis studies. Novelty: This research combines three popular feature extraction techniques in sentiment analysis, compares three machine learning algorithms on multiple datasets, and achieves a remarkable accuracy rate of 99.74% with the ANN. The study demonstrates the robustness of the approach through model refinement and contributes insights into sentiment analysis in online resources.

Keywords: Dataset; Feature Extraction; Machine Learning; Sentiment Analysis; Accuracy and Precision


  1. Muhammet SB, Fatih K. Sentiment Analysis on Social Media Reviews Datasets with Deep Learning Approach Article. Sakarya University Journal of Computer and Information Sciences·. 2021;4(1). Available from: https://doi.org/10.35377/saucis.04.01.833026
  2. Bordoloi M, Biswas SK. Sentiment analysis: A survey on design framework, applications and future scopes. Artificial Intelligence Review. 2023. Available from: https://doi.org/10.1007/s10462-023-10442-2
  3. Alantari HJ, Currim IS, Deng Y, Singh S. An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews. International Journal of Research in Marketing. 2022;39(1):1–19. Available from: https://doi.org/10.1016/j.ijresmar.2021.10.011
  4. Bhuvaneshwari P, Rao AN, Robinson YH, Thippeswamy MN. Sentiment analysis for user reviews using Bi-LSTM self-attention based CNN model. Multimedia Tools and Applications. 2022;81(9):12405–12419. Available from: https://doi.org/10.1007/s11042-022-12410-4
  5. Li L, Goh TTT, Jin D. How textual quality of online reviews affect classification performance: a case of deep learning sentiment analysis. Neural Computing and Applications. 2020;32(9):4387–4415. Available from: https://doi.org/10.1007/s00521-018-3865-7
  6. Zhiqiang G, Guofei C, Yongming H, Lu G, Li F. Semantic relation extraction using sequential and tree-structured LSTM with attention. Information Sciences. 2020;509:183–192. Available from: https://doi.org/10.1016/j.ins.2019.09.006
  7. Jain R, Kumar A, Nayyar A, Dewan K, Garg R, Raman S, et al. Explaining sentiment analysis results on social media texts through visualization. Multimedia Tools and Applications. 2023;82(15):22613–22629. Available from: https://doi.org/10.1007/s11042-023-14432-y
  8. Nandwani P, Verma R. A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining. 2021;11(1). Available from: https://doi.org/10.1007/s13278-021-00776-6
  9. Rahman H, Tariq J, Masood MA, Subahi AF, Khalaf OI, Alotaibi Y. Multi-Tier Sentiment Analysis of Social Media Text Using Supervised Machine Learning. Computers, Materials & Continua. 2023;74(3):5527–5543. Available from: https://doi.org/10.32604/cmc.2023.033190
  10. Budhi GS, Chiong R, Pranata I, Hu Z. Using Machine Learning to Predict the Sentiment of Online Reviews: A New Framework for Comparative Analysis. Archives of Computational Methods in Engineering. 2021;28(4):2543–2566. Available from: https://doi.org/10.1007/s11831-020-09464-8
  11. Fan FLL, Xiong J, Li M, Wang G. On Interpretability of Artificial Neural Networks: A Survey. IEEE Transactions on Radiation and Plasma Medical Sciences. 2021;5(6):741–760. Available from: https://doi.org/10.1109/TRPMS.2021.3066428
  12. Qianwen AX, Victor C, Chrisina J. A systematic review of social media-based sentiment analysis: Emerging trends and challenges. Decision Analytics Journal. 2022;3:100073. Available from: https://doi.org/10.1016/j.dajour.2022.100073
  13. Dimple T, Bharti N, Bhoopesh SB, Ashutosh M, Manoj K. A systematic review of social network sentiment analysis with comparative study of ensemble-based techniques. Artif Intell Rev. 2023;12:1–55. Available from: https://doi.org/10.1007/s10462-023-10472-w
  14. Yin Z, Shao J, Hussain MJ, Hao Y, Chen Y, Zhang X, et al. DPG-LSTM: An Enhanced LSTM Framework for Sentiment Analysis in Social Media Text Based on Dependency Parsing and GCN. Applied Sciences. 2022;13(1):354. Available from: https://doi.org/10.3390/app13010354


© 2023 Mathur et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.