• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 27, Pages: 2058-2067

Original Article

Sentiment and Fuzzy Aware Product Recommendation System Using HOA and FT-DBN in E- Commerce

Received Date:25 February 2023, Accepted Date:20 June 2023, Published Date:17 July 2023


Objectives: To identify and select the customers’ liked products by introducing a new product recommendation system. Methods: This work proposes a new product recommendation system that incorporates a new feature optimization method called Sentiment weighted Horse herd Optimization Algorithm (SHOA) to identify the most suitable words that help perform effective prediction. This work’s prediction process is carried out by applying a newly proposed Deep Belief Network incorporating fuzzy temporal features. This work uses two different Amazon datasets. The first dataset contains 51, 00,000 review comments about various products, including books and movies. The second dataset is built with 82,00,000 review comments on Toys and Games. These data sets consider the product id and review rate important features and are used to compare with all other available works through experimental results. Findings:The experiments have been conducted using the Amazon dataset and proved better than other recommendation systems in terms of effectiveness and efficiency through Precision, Recall, Serendipity and nDCG value. Novelty: The introduction of a new DBN with Fuzzy Temporal rules and the newly developed SHOA is novel in this work to recommend suitable products to the customer.

Keywords: Feature Optimization; CNN; LSTM; Product Recommendation System; Fuzzy Logic; Fuzzy Rules


  1. Saurabh K, Sunil FR. Context Aware Recommendation Systems: A review of the state of the art techniques. Computer Science Review. 2020;37:1–11. Available from: https://doi.org/10.1016/j.cosrev.2020.100255
  2. Sankar PP, Ganapathy S, Kannan A. REFERS: refined and effective fuzzy e-commerce recommendation system. International Journal of Business Intelligence and Data Mining. 2020;17(1):117–137. Available from: https://dx.doi.org/10.1504/IJBIDM.2019.10011148
  3. Dheeraj M, Omprakash R. An intelligent approach to design of E-Commerce metasearch and ranking system using next-generation big data analytics. Journal of King Saud University - Computer and Information Sciences. 2021;33(2):183–194. Available from: https://doi.org/10.1016/j.jksuci.2018.02.015
  4. Abolfazl M, Varaprasad RM, Leo GD, Gerard J, Preethi V. Online product sentiment analysis using random evolutionary whale optimization algorithm and deep belief network. Pattern Recognition Letters. 2022;159:1–8. Available from: https://doi.org/10.1016/j.patrec.2022.04.024
  5. Idris R, Naomie S, Aminu D, Maged N. Modeling sentimental bias and temporal dynamics for adaptive deep recommendation system. Expert Systems with Applications. 2022;191:116262. Available from: https://doi.org/10.1016/j.eswa.2021.116262
  6. Chen X, Lei C, Liu D, Wang G, Tang H, Zha ZJ, et al. E-Commerce Storytelling Recommendation Using Attentional Domain-Transfer Network and Adversarial Pre-Training. IEEE Transactions on Multimedia. 2022;24:506–518. Available from: https://doi.org/10.1109/TMM.2021.3054525
  7. Gao C, Lin THH, Li N, Jin D, Li Y. Cross-platform Item Recommendation for Online Social E-Commerce. IEEE Transactions on Knowledge and Data Engineering. 2021;35(2):1. Available from: https://doi.org/10.1109/TKDE.2021.3098702
  8. Ma D, Wang Y, Ma J, Jin Q. SGNR: A Social Graph Neural Network Based Interactive Recommendation Scheme for E-Commerce. Tsinghua Science and Technology. 2023;28(4):786–798. Available from: https://doi.org/10.26599/TST.2022.9010050
  9. Ameen B, Zohair A, Ali D, Rabeeh AA, Hussain D. Aspect based Sentiment Analysis Polarity Estimation of. Customer Reviews on Twitter. Computers, Materials & Continua. 2021;67(2):2203–2225. Available from: https://www.techscience.com/cmc/v67n2/41318/html
  10. Miarnaeimi F, Azizyan G, Rashki M. Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems. 2021;213:106711. Available from: https://doi.org/10.1016/j.knosys.2020.106711
  11. Antony RL, Arokia RJ. A Content Recommendation System for Effective E-learning Using Embedded Feature Selection and Fuzzy DT Based CNN. Journal of Intelligent & Fuzzy Systems. 2020;39(1):795–808. Available from: https://doi.org/10.3233/JIFS-191721


© 2023 Manikandan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.