• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 35, Pages: 1754-1763

Original Article

SMART Emergency Vehicle Management at Signalized Intersection using Machine Learning

Received Date:30 May 2022, Accepted Date:01 September 2022, Published Date:19 September 2022


Objective: Primary objective of the article is to develop a machine-learningbased pre-emptive traffic signal controller to ensure the free flow of an emergency vehicle across the signalized intersection. Method: Pre-emptive signal control system involves various functional modules such as emergency vehicle notification, traffic volume estimation, green time prediction, and signal control. The current study is focused on green time prediction based on traffic composition and volume. The study is presented in two folds; identify a suitable machine learning model to predict the green time and use the selected model to design the proposed system. The results obtained from the proposed system are compared against a non-pre-emptive controller. Findings: The Convolution Neural Network (CNN) is found to be the best suitable algorithm for green time prediction. The green time prediction module shares a pivotal role in the system as more/less green time prediction can waste the green time or block the free flow of emergency vehicles. Thus, the accuracy of green time prediction has significance in the system and CNN showed a 96% R2-score. Delay for an emergency vehicle is 86 seconds in a conventional non-pre-emptive controller and it is 8 seconds in the case of proposed system. Novelty: Green time prediction under heterogeneous traffic conditions is a challenge. Analytical models are widely used to estimate the green time as per existing research works concerned with emergency vehicle management. However, machine learning models are also in use, but deep learning models are applied rarely, and CNN is applied in current work.

Keywords: Signal preemption; edge computing; machine learning; signalized intersection; emergency management


  1. Hussin WMHBW, Rosli MM, Nordin R. Review of traffic control techniques for emergency vehicles. Indones. J. Electr. Eng. Comput. Sci. 2019;13(3):1243–1251. Available from: https://doi.org/10.11591/ijeecs.v13.i3.pp1243-1251
  2. Albatish IM, Abu-Naser SS. Modeling and Controlling Smart Traffic Light System Using a Rule Based System. 2019 International Conference on Promising Electronic Technologies (ICPET). 2019;p. 55–60. Available from: https://doi.org/10.1109/ICPET.2019.00018
  3. Kekuda A, Anirudh R, Krishnan M. Reinforcement Learning based Intelligent Traffic Signal Control using n-step SARSA. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). 2021;p. 379–384. Available from: https://doi.org/10.1109/ICAIS50930.2021.9395942
  4. Lilhore UK, Imoize AL, Li CT, Simaiya S, Pani SK, Goyal N, et al. Design and Implementation of an ML and IoT Based Adaptive Traffic-Management System for Smart Cities. Sensors. 22(8):2908. Available from: https://doi.org/10.3390/s22082908
  5. Savithramma RM, Sumathi R. Road Traffic Signal Control and Management System : A Survey. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). 2020;p. 104–110. Available from: https://doi.org/10.1109/ICISS49785.2020.9315970
  6. Sarpal MKHD, Asthana Y. Review on Smart Traffic Management System for Ambulance. Int. J. Electr. Eng. Technol. 2020;11(6):1–9. Available from: https://doi.org/10.34218/ijeet.11.6.2020.001
  7. Anil R, Satyakumar M, Salim A. Emergency Vehicle Signal Pre-emption System for Heterogeneous Traffic Condition : A Case Study in Trivandrum City. 2019 4th International Conference on Intelligent Transportation Engineering (ICITE). 2019;p. 306–310. Available from: https://doi.org/10.1109/ICITE.2019.8880151
  8. Mu H, Liu L, Li X. Signal Preemption Control of Emergency Vehicles Based on Timed Colored Petri Nets. Discrete Dynamics in Nature and Society. 2018;2018:1–12. Available from: https://doi.org/10.1155/2018/7095485
  9. Cao M, Shuai Q, Li VOK. Emergency Vehicle-Centered Traffic Signal Control in Intelligent Transportation Systems. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). 2019;p. 4525–4531. Available from: https://doi.org/10.1109/ITSC.2019.8916879
  10. Hashim N, Idris F, Kadmin AF, Sidek SSJ. Automatic traffic light controller for emergency vehicle using peripheral interface controller. International Journal of Electrical and Computer Engineering (IJECE). 2019;9(3):1788. Available from: https://doi.org/10.11591/ijece.v9i3.pp1788-1794
  11. Zhong L, Chen Y. A Novel Real-Time Traffic Signal Control Strategy for Emergency Vehicles. IEEE Access. 2022;10:19481–19492. Available from: https://doi.org/10.1109/ACCESS.2022.3149920
  12. Humayun M, Almufareh MF, Jhanjhi NZ. Autonomous Traffic System for Emergency Vehicles. Electronics. 2022;11(4):510. Available from: https://doi.org/10.3390/electronics11040510
  13. Kanthavel DKB, Sangeetha SKB, Keerthana KP. An empirical study of vehicle to infrastructure communications - An intense learning of smart infrastructure for safety and mobility. International Journal of Intelligent Networks. 2021;2:77–82. Available from: https://doi.org/10.1016/j.ijin.2021.06.003
  14. Obrusník I, Herman Z, Hurák. Queue discharge-based emergency vehicle traffic signal preemption. IFAC-PapersOnLine. 2020;53(2):14997–15002. Available from: https://doi.org/10.1016/j.ifacol.2020.12.1998
  15. Bieker-Walz L, Behrisch M. Modelling green waves for emergency vehicles using connected traffic data. EPiC Series in Computing. 2019;62:10–20. Available from: https://doi.org/10.29007/sj1m
  16. Mu H, Song Y, Liu L. Route-Based Signal Preemption Control of Emergency Vehicle. J. Control Sci. Eng. 2018.
  17. Al-Khrisat W, Hazim N, Hassan MR. Improving Traffic Incident Management Using Intelligent Transportation Systems , A Case of Amman City. Turkish J. Comput. Math. Educ. 2021;12(12):4343–4352.
  18. Shaaban K, Khan MA, Hamila R, Ghanim M. A Strategy for Emergency Vehicle Preemption and Route Selection. Arab. J. Sci. Eng. 2019;44(10):8905–8913. Available from: https://doi.org/10.1016/j.ijin.2021.06.003
  19. Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing. 2021;151:107398. Available from: https://doi.org/10.1016/j.ymssp.2020.107398
  20. Gao K, Huang S, Han F, Li S, Wu W, Du R. An integrated algorithm for intersection queue length estimation based on iot in a mixed traffic scenario. Applied Sciences. 2020;10(6). Available from: https://doi.org/10.3390/app10062078


© 2022 Savithramma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.