• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 24, Pages: 1787-1794

Original Article

Study of Different Plant Species and their Hardiness Zones for Applications and Utilization in Phytoremediation Processes

Received Date:06 April 2023, Accepted Date:31 May 2023, Published Date:19 June 2023


Objectives: The purpose of this study is to identify plant species that are effective in phytoremediation based on their ability to withstand various hardiness zones. This study also intends to clarify how to choose plant species appropriate for phytoremediation based on those species’ capacity to adapt to various hardiness zones. The end goal of this project is to develop effective phytoremediation strategies that can help to mitigate the negative environmental consequences of wastewater. Methods: The USDA Hardiness Zone Map and literature on phytoremediation were used to obtain data from a variety of sources. Data analysis to find plant species that can flourish in various hardiness zones and their potential for application in phytoremediation processes. Findings: In various hardiness zones, many plant species, including but not limited to cattails, water hyacinths, and duckweeds, demonstrate extraordinary potential for phytoremediation. Due to their innate ability to absorb and store toxins, these species are able to efficiently remove pollutants from wastewater. Novelty: This study offers important information on choosing plant species for phytoremediation depending on how well they adapt to various hardiness zones. The data can be utilized to create efficient phytoremediation strategies that reduce the adverse environmental consequences of wastewater. The current study is significant since it assesses the suitability of several plant species for phytoremediation based on their tolerance of various hardiness zones. To assist reduce the negative environmental consequences of wastewater, efficient phytoremediation solutions can be developed using the data from this study.

Keywords: Hardiness Zone; USDA; Plant Species; Phytoremediation; Plant Inventory


  1. Chen L, Liu JR, Hu WF, Gao J, Yang JY. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. Journal of Hazardous Materials. 2021;405:124200. Available from: https://doi.org/10.1016/j.jhazmat.2020.124200
  2. Parveen S, Bhat IU, Khanam Z, Rak AE, Yusoff HM, Akhter MS. Phytoremediation: In situ Alternative for Pollutant Removal from Contaminated Natural Media: A Brief Review. Biointerface Research in Applied Chemistry. 2022;12(4):4945–4960. Available from: https://doi.org/10.33263/BRIAC124.49454960
  3. Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere. 2020;247:125932. Available from: https://doi.org/10.1016/j.chemosphere.2020.125932
  4. Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances. 2022;8:100203. Available from: https://doi.org/10.1016/j.envadv.2022.100203
  5. Sylvester L, Omitaomu OA, Parish ES, Bhaduri BL. Evaluating the Implications of Climate Projections on Heat Hardiness Zones for Green Infrastructure Planning. Current Environmental Engineering. 2019;6(1):55–73. Available from: https://doi.org/10.2174/2212717806666190204102225
  6. Jain M, Majumder A, Ghosal PS, Gupta AK. A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management. 2020;272:111057. Available from: https://doi.org/10.1016/j.jenvman.2020.111057
  7. Dehnavi SM, Ebrahimipour G. Comparative remediation rate of biostimulation, bioaugmentation, and phytoremediation in hydrocarbon contaminants. International Journal of Environmental Science and Technology. 2022;19(11):11561–11586. Available from: https://doi.org/10.1007/s13762-022-04343-0
  8. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety. 2019;174:714–727. Available from: https://doi.org/10.1016/j.ecoenv.2019.02.068
  9. Yadav R, Singh S, Kumar A. Chapter 15 - Phytoremediation: A wonderful cost-effective tool, Editor(s): Srujana Kathi, Suja Devipriya, Kaliannan Thamaraiselvi. Advances in Environmental Pollution Research, Cost Effective Technologies for Solid Waste and Wastewater Treatment. 2022;p. 179–208. Available from: https://doi.org/10.1016/B978-0-12-822933-0.00008-5
  10. Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, et al. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering. 2018;120:274–298. Available from: https://doi.org/10.1016/j.ecoleng.2018.05.039
  11. Rocha CS, Rocha DC, Kochi LY, Carneiro DNM, Reis MVD, Gomes MP. Phytoremediation by ornamental plants: a beautiful and ecological alternative. Environmental Science and Pollution Research. 2022;29(3):3336–3354. Available from: https://doi.org/10.1007/s11356-021-17307-7
  12. Xiang L, Harindintwali JD, Wang F, Redmile-Gordon M, Chang SX, Fu Y, et al. Integrating Biochar, Bacteria, and Plants for Sustainable Remediation of Soils Contaminated with Organic Pollutants. Environmental Science & Technology. 2022;56(23):16546–16566. Available from: https://doi.org/10.1021/acs.est.2c02976
  13. Kumar A, Verma JP. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiological Research. 2018;207:41–52. Available from: https://doi.org/10.1016/j.micres.2017.11.004
  14. Khoshru B, Mitra D, Khoshmanzar E, Myo EM, Uniyal N, Mahakur B, et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition. 2020;43(20):3062–3092. Available from: https://doi.org/10.1080/01904167.2020.1799004
  15. Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee IJ. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products. 2020;143:111931.
  16. Patek-Mohd NN, Abdu A, Jusop S, Abdul-Hamid H, Karim MR, Nazrin M, et al. Potentiality of Melastoma malabathricum as Phytoremediators of soil contaminated with sewage sludge. Scientia Agricola. 2018;75(1):27–35. Available from: https://doi.org/10.1590/1678-992X-2016-0002


© 2023 Gawande & Sarode. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.