• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 16, Pages: 1654-1662

Original Article

The Proposed IT-TALB in Infrastructure as a Service Cloud

Received Date:04 January 2024, Accepted Date:19 March 2024, Published Date:15 April 2024


Objectives: The purpose of the proposed IT-TALB load balancing algorithm is to dynamically allocate the user's workload to the appropriate virtual machine in an Infrastructure as a Service (IaaS) cloud environment. Methods: This research work includes several key procedures. The user's workloads are distributed to the data center controller (DCC), which in turn uses the ECO-SBP service broker policy to select the efficient data center (DC) for processing the loads. The DCC forwards the load to the selected DC, and the IT-TALB load balancer picks the best Virtual Machine (VM) using CloudAnalyst simulation tool for load allocations according to metrics such as its size, current number of loads, and load size. IT-TALB partitions the available and busy VMs separately and stores them in the TreeMap structure. This algorithm also incorporates the scalability of the given VM when the load size is not compatible with the existing VMs by extending the resources of underutilized VMs. Findings: The research finding demonstrates that the proposed IT-TALB algorithm improves IaaS cloud performance compared to the existing algorithms. It achieves optimum load balancing, reduces the searching time of the VM, avoids the load waiting time, improves throughput, minimizes the response time, and enhances the resource utilization ratio. IT-TALB yields a throughput and resource utilization ratio of 98 to 99 percent. Novelty: The novelty of this research is that the IT-TALB algorithm incorporates the scalability of the underutilized VM and also introduces new metrics such as throughput and resource utilization ratio in the CloudAnalyst simulation tool for assessing the performance of the proposed algorithm. This study provides information for analyzing the proposed IT-TALB strategies with the existing two algorithms such as TLB and TALB in order to show its performance.

Keywords: Cloud Computing, Infrastructure as a Service, Load Balancing, Throttled Load Balancing, Virtual Machine


  1. Ramzan MS, Asghar A, Ullah A, Alsolami F, Ahmad I. A Bee Colony-Based Optimized Searching Mechanism in the Internet of Things. Future Internet. 2024;16(1):1–15. Available from: https://dx.doi.org/10.3390/fi16010035
  2. Tasneem R, Jabbar MA. An Insight into Load Balancing in Cloud Computing. In: Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, Lecture Notes in Electrical Engineering . (pp. 1125-1140) Singapore. Springer . 2022.
  3. Sharma M, Kumar R, Jain A. Load Balancing in Cloud Computing Environment: A Broad Perspective. In: Intelligent Data Communication Technologies and Internet of Things, Lecture Notes on Data Engineering and Communications Technologies. (Vol. 57, pp. 535-551) Singapore. Springer . 2021.
  4. Rajak R, Choudhary A, Sajid M. Load balancing techniques in cloud platform: A systematic study. International Journal of Experimental Research and Review. 2023;30:15–24. Available from: https://dx.doi.org/10.52756/ijerr.2023.v30.002
  5. Reshan MSA, Syed D, Islam N, Shaikh A, Hamdi M, Elmagzoub MA, et al. A Fast Converging and Globally Optimized Approach for Load Balancing in Cloud Computing. IEEE Access. 2023;11:11390–11404. Available from: https://dx.doi.org/10.1109/access.2023.3241279
  6. Rajpoot NK, Singh P, Pant B. Load Balancing Strategies for Cloud Computing: A Simulation-Based Study. Journal of Nano- and Electronic Physics. 2023;15(3):1–4. Available from: https://doi.org/10.21272/jnep.15(3).03023
  7. Sansanwal S, Jain N. An Improved Approach for Load Balancing among Virtual Machines in Cloud Environment. Procedia Computer Science. 2022;215:556–566. Available from: https://dx.doi.org/10.1016/j.procs.2022.12.058
  8. Udayasankaran P, Thangaraj SJJ. Energy efficient resource utilization and load balancing in virtual machines using prediction algorithms. International Journal of Cognitive Computing in Engineering. 2023;4:127–134. Available from: https://dx.doi.org/10.1016/j.ijcce.2023.02.005
  9. Khair Y, Benlabbes H. Opportunistic Load Balancing for Virtual Machines Scheduling in a Cloud Environment. Engineering Proceedings. 2023;29(1):1–6. Available from: https://doi.org/10.3390/engproc2023029001
  10. Zhou J, Lilhore UK, Poongodi M, Hai T, Simaiya S, Jawawi DNA, et al. Comparative analysis of metaheuristic load balancing algorithms for efficient load balancing in cloud computing. Journal of Cloud Computing. 2023;12(1):1–21. Available from: https://dx.doi.org/10.1186/s13677-023-00453-3
  11. Pakhrudin NSM, Kassim M, Idris A. Cloud service analysis using round-robin algorithm for quality-of-service aware task placement for internet of things services. International Journal of Electrical and Computer Engineering (IJECE). 2023;13(3):3464–3473. Available from: https://dx.doi.org/10.11591/ijece.v13i3.pp3464-3473
  12. Zamri AH, Pakhrudin NSM, Saaidin S, Kassim M. Equally Spread Current Execution Load Modelling with Optimize Response Time Brokerage Policy for Cloud Computing. International Journal of Advanced Computer Science and Applications. 2023;14(2):482–491. Available from: https://dx.doi.org/10.14569/ijacsa.2023.0140257
  13. Kumar VD, Praveenchandar J, Arif M, Brezulianu A, Geman O, Ikram A. Efficient Cloud Resource Scheduling with an Optimized Throttled Load Balancing Approach. Computers, Materials & Continua. 2023;77(2):2179–2188. Available from: https://dx.doi.org/10.32604/cmc.2023.034764
  14. Le HN, Tran HC. ITA: The Improved Throttled Algorithm of Load Balancing on Cloud Computing. International Journal of Computer Networks & Communications. 2022;14(1):25–39. Available from: https://aircconline.com/ijcnc/V14N1/14122cnc02.pdf
  15. Sivaraj V, Kangaiammal A. Load Allocation of Virtual Machines based on Enhanced Throttled Load Balancing Algorithm. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021;12(7):1841–1848. Available from: https://turcomat.org/index.php/turkbilmat/article/view/3084
  16. Priya N, Shanmugapriya S. A New Throttled Adapted Load Balancing (TALB) Strategy for Dynamic VM Allocations in Cloud Datacenters. International Journal of Cloud Computing. 2024;13(3). Available from: https://doi.org/10.1504/ijcc.2024.10060349


© 2024 Shanmugapriya & Priya. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.