• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 12, Pages: 862-871

Original Article

A New Formulation of Generalized Equation of State (GEOS) based on Finite Strain Theory and Comparison with other Equations of State (EOSs)

Received Date:29 December 2022, Accepted Date:22 February 2023, Published Date:25 March 2023

Abstract

Objective: To formulate the equation of state as well as their isothermal bulk modulus using the basic laws of thermodynamics and Identities. Method: This study has considered a relation of Eulerian finite strain having two arbitrary parameters a2 and b2 (a2,b2  1). The salient feature of this equation of state is that by substituting the values of parameters, the expressions for the prominent equations of state and their bulk modulus can be obtained. Findings : Four prototype solids viz. MgO, CaO, NaCl, and Al2O3 have been applied to the equation of state to test its validity and applicability. The results were compared with experimental data and other equations of state. Consequently, the proposed equation of state exhibits the same trend as prominent equations of state and provides better results. It corresponds well with the experimental curve at high pressure. Novelty: The GEOS can be used in the future for planning high-pressure experiments on the compression behavior of several materials, minerals, and solids.

Keywords: The Eularian Finite Stain Theory; Equation of State; Prototype Solids; High Pressure

References

  1. Anderson OL. Equation of state of solids for Geophysics and Ceramic Science. Oxford. Oxford University Press. 1995.
  2. Singh SP, Gupta S, Goyal SC. Elastic properties of alkaline earth oxides under high pressure. Physica B: Condensed Matter. 2007;391(2):307–311. Available from: https://doi.org/10.1016/j. physb.2006.10.011
  3. Singh SP. Temperature Dependence of Elastic Constants of Alkaline Earth Oxide Solids. International Journal of Modern Physics: Conference Series. 2013;22:397–403. Available from: https://doi.org/10.1142/S 201019451301043X
  4. Singh SP, Singh DP, Singh NP, Shukla MN. Study of elastic properties of prototype solids under high pressure. Computational Condensed Matter. 2022;30:e00626. Available from: https://doi.org/10.1016 /j.cocom.2021.e00626
  5. Brovko G. Generalized Theory of Stress and Strain Measures in the. Classical Continuum Mechanics. Moscow University Mechanics Bulletin. 2018;73:117–127. Available from: https://doi.org/10.3103/S00 27133018050023
  6. Shakeriaski F, Ghodrat M, Escobedo-Diaz J, Behnia M. Recent advances in generalized thermoelasticity theory and the modified models: a review. Journal of Computational Design and Engineering. 2021;8(1):15–35. Available from: https://doi. org/10.1093/jcde/qwaa082
  7. Yang J, Fu LY, Fu BY, Wang Z, Hou W. High-temperature effect on the material constants and elastic moduli for solid rocks. Journal of Geophysics and Engineering. 2021;18(4):583–593. Available from: https://dx.doi.org/10.1093/jge/gxab037
  8. Dehant V, Campuzano SA, Santis AD, Westrenen WV. Structure, Materials and Processes in the Earth’s Core and Mantle. Surveys in Geophysics. 2022;43(1):263–302. Available from: https://doi.org/10.1007/ s10712-021-09684-y
  9. Svendsen B, Ahrens TJ. Dynamic compression of diopside and salite to 200 GPa. Geophysical Research Letters. 1983;10(7):501–504. Available from: https://doi.org/10.1029/GL010i007p00 501
  10. Jeanloz R, Ahrens TJ. Anorthite: thermal equation of state to high pressures. Geophysical Journal International. 1980;62(3):529–549. Available from: https://doi.org/10.1111/j.1365-246X.1980.tb02589.x
  11. Carmichael RS. Handbook of Physical Properties of Rocks . CRC Press. 1984. Available from: https://doi.org/10.1201/9780203712030
  12. Ahrens TJ, Anderson DL, Ringwood AE. Equations of state and crystal structures of high-pressure phases of shocked silicates and oxides. Reviews of Geophysics. 1969;7(4):667. Available from: https://doi.org/10.1029/RG007i004p00667
  13. Marsh SP. LASL shock Hugoniot data. University of California press Ed. 1980.
  14. Speziale S, Shieh SR, Duffy TS. High-pressure elasticity of calcium oxide: A comparison between Brillouin spectroscopy and radial X-ray diffraction. Journal of Geophysical Research: Solid Earth. 2006;111(B2). Available from: https://doi.org/10.1029/2005JB003823
  15. Karki BB, Stixrude L, Clark SJ, Warren MC, Ackland GJ, Crain J. Structure and elasticity of MgO at high pressure. American Mineralogist. 1997;82(1-2):51–60. Available from: https://doi.org/10. 2138/am-1997-1-207
  16. Myhill R. An anisotropic equation of state for high-pressure, high-temperature applications. Geophysical Journal International. 2022;231(1):230–242. Available from: https://doi.org/10.1093/gji/ ggac180
  17. Stixrude L, Lithgow-Bertelloni C. Thermodynamics of mantle minerals - I. Physical properties. Geophysical Journal International. 2005;162(2):610–632. Available from: https://doi.org/10.11 11/j.1 365-246X.2005.02642.x
  18. Gupta C, Anon K, Kumar J. Anharmonic behaviour of lanthanum selenide crystal at high temperatures. Journal of Science and Technological Researches. 2021;3(2):36. Available from: https://doi.org/ 10.51514/JSTR.3.2.2021.36-40

Copyright

© 2023 Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee

DON'T MISS OUT!

Subscribe now for latest articles and news.