• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 13, Pages: 967-977

Original Article

A Novel Image Compression Algorithm Based on Autoencoder for Biometric Template Protection Scheme

Received Date:28 December 2022, Accepted Date:28 February 2023, Published Date:30 March 2023


Objectives: To evaluate the proposed deep learning-based method for biometric template protection schemes with other existing image compression methods. Methods: In this study, four image compression methods such as JPEG_LS, Vector quantization (VQ), Run-length encoding (RLE), and the Autoencoder methods are implemented. The experimental results are compared with the different performance parameters that are applied over the CASIA I iris dataset possessing 756 images. Findings: The proposed autoencoder method algorithm offered enhanced results in terms of PSNR, SSIM, MSE, and CR when compared to other transform methods. The deep neural network-based autoencoder algorithm achieved the highest compression ratio of 89.05 percent, while the conventional algorithms achieved the highest image quality rate of 94.05 percent. Novelty: A novel autoencoder-based image compression model has been proposed in this study. The proposed Autoencoder (AE) method incorporates five stages like Initialization, Learning compression representations, Generation of chaotic sequence, Image encryption and decryption, and Image reconstruction. The generation of the chaotic sequence using the stochastic logistic map, as well as the learning compression representations contributes towards the novelty of this study.

Keywords: Image compression; Autoencoder; Runlength encoding (RLE); Vector quantization


  1. Zong Y, Liu S, Liu X, Gao S, Dai X, Gao Z. Robust Synchronized Data Acquisition for Biometric Authentication. IEEE Transactions on Industrial Informatics. 2022;18(12):9072–9082. Available from: https://doi.org/10.1109/TII.2022.3182326
  2. Dimililer K. DCT-based medical image compression using machine learning. Signal, Image and Video Processing. 2022;16(1):55–62. Available from: https://doi.org/10.1007/s11760-021-01951-0
  3. Pourasad Y, Cavallaro F. A Novel Image Processing Approach to Enhancement and Compression of X-ray Images. International Journal of Environmental Research and Public Health. 2021;18(13):6724. Available from: https://doi.org/10.3390/ijerph18136724
  4. Han J. Texture Image Compression Algorithm Based on Self-Organizing Neural Network. Computational Intelligence and Neuroscience. 2022;2022:1–10. Available from: https://doi.org/10.1155/2022/4865808
  5. Umamaheswari S, Srinivasaraghavan V. Lossless medical image compression algorithm using tetrolet transformation. Journal of Ambient Intelligence and Humanized Computing. 2021;12(3):4127–4135. Available from: https://doi.org/10.1007/s12652-020-01792-8
  6. Atiqur R, Mohamed H, Asfaqur R. A comparative analysis of the state-of-the-art lossless image compression techniques. Proceedings of the International Conference on ICT Integration in Technical Education. 2022. Available from: https://doi.org/10.1051/shsconf/202213903001
  7. Mohammad RM, Saniyatul M, Arif B, Mochammad J, Nur SM, Devvana AP, et al. Image Data Compression in the Public Reporting System in Lamongan using the Huffman Method and Run Length Encoding. Proceedings of the International Conference on Applied Sci and Tech on Social Sci. 2022. Available from: https://doi.org/10.2991/assehr.k.220301.146
  8. Turcza P, Duplaga M. Low-Power Low-Area Near-Lossless Image Compressor for Wireless Capsule Endoscopy. Circuits, Systems, and Signal Processing. 2023;42(2):683–704. Available from: https://doi.org/10.1007/s00034-022-02149-6
  9. Tiancong Z, Shaowei W, Zhijie W. Adaptive encoding based lossless data hiding method for VQ compressed images using tabu search. Information Sciences. 2022;602. Available from: https://doi.org/10.1016/j.ins.2022.04.011
  10. Abd-Alzhra AS, Tamimi MSHA. Image Compression Using Deep Learning: Methods and Techniques. Iraqi Journal of Science. 2022;63(3):1299–1312. Available from: https://doi.org/10.24996/ijs.2022.63.3.34
  11. Qi Y, Qiu M, Jiang H, Wang F. Extracting Fingerprint Features Using Autoencoder Networks for Gender Classification. Applied Sciences. 2022;12(19):10152. Available from: https://doi.org/10.3390/app121910152
  12. Dipti M, Satish KS, Rajat KS. Deep Architectures for Image Compression: A Critical Review. Signal Processing. 2022;191:108346. Available from: https://doi.org/10.1016/j.sigpro.2021.108346
  13. Jalilian E, Hofbauer H, Uhl A. Iris Image Compression Using Deep Convolutional Neural Networks. Sensors. 2022;22(7):2698. Available from: https://doi.org/10.3390/s22072698
  14. Sonali DP, Roshani R, Rutvij HJ, Tariq AA. Robust Authentication System with Privacy Preservation of Biometrics. 2022. Available from: https://doi.org/10.1155/2022/7857975
  15. Lahmidi A, Moujahdi C, Minaoui K, Rziza M. On the methodology of fingerprint template protection schemes conception : meditations on the reliability. EURASIP Journal on Information Security. 2022;2022(1). Available from: https://doi.org/10.1186/s13635-022-00129-6
  16. Ren H, Sun L, Guo J, Han C, Wu F. Finger vein recognition system with template protection based on convolutional neural network. Knowledge-Based Systems. 2021;227:107159. Available from: https://doi.org/10.1016/j.knosys.2021.107159
  17. Alamgir S, Saiyed U, Ranjeet KR, Muhammad KR. A Secure and Efficient Biometric Template Protection Scheme for Palmprint Recognition System. IEEE Transactions on Artificial Intelligence. 2022:1–13. Available from: https://doi.org/10.1109/TAI.2022.3188596
  18. Xuan L, Lu Z, Zihao G, Tailin H, Mingchi J, BX, et al. Medical Image Compression Based on Variational Autoencoder. Mathematical Problems in Engineering. 2022;p. 1–12. Available from: https://doi.org/10.1155/2022/7088137
  19. Otair M, Abualigah L, Qawaqzeh MK. Improved near-lossless technique using the Huffman coding for enhancing the quality of image compression. Multimedia Tools and Applications. 2022;81(20):28509–28529. Available from: https://doi.org/10.1007/s11042-022-12846-8


© 2023 Vasuki & Prasanna. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.