• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 45, Pages: 4164-4176

Original Article

A Novel Meta Heuristic Approach with Optimal Deep Learning Neural Network Based Oral Cancer Detection Model

Received Date:24 August 2023, Accepted Date:24 October 2023, Published Date:05 December 2023


Objectives: This study proposes a new approach to improve oral cancer detection in medical images by utilizing a Deep Convolutional Neural Network (DCNN) and an optimized Long Short-Term Memory (LSTM) technique. Methods: First, the input oral squamous cell carcinoma images are pre-processed using median filtering as well as CLAHE. Next, feature extraction is performed using the Local Tetra Pattern (LTrP) to extract different features. The HHHLO algorithm is then applied to select the optimal features for the subsequent feature selection process. Finally, the selected features are classified using a hybrid classifier called DCNN-LSTM, which predicts the diagnosis of patients with oral cancer. The investigation of the DCNN-LSTM model involves conducting experiments on a commonly used biomedical image dataset that is readily accessible through the Kaggle repository. Findings: The proposed method was implemented on the MATLAB platform, and its performance was evaluated using various metrics. The results demonstrated the superiority of the DCNN-LSTM model over existing methods, achieving a maximum accuracy of 0.975. Novelty: Oral cancer is a common and formidable type of cancer associated with a significant mortality rate.

Keywords: Oral cancer, Improved Squirrel Search Algorithm (ISSA), Deep Convolutional Neural Network (DCNN), Contrast Limited Adaptive Histogram Equalization (CLAHE), Hybrid Horse herd lion optimization (HHHLO)


  1. Lakshmanaprabu SK, Mohanty SN, Shankar K, Arunkumar N, Ramirez G. Optimal deep learning model for classification of lung cancer on CT images. Future Generation Computer Systems. 2019;92:374–382. Available from: https://doi.org/10.1016/j.future.2018.10.009
  2. Ilhan B, Guneri P, Wilder-Smith P. The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral Oncology. 2021;116:105254. Available from: https://doi.org/10.1016/j.oraloncology.2021.105254
  3. Huang Q, Ding H, Razmjooy N. Optimal deep learning neural network using ISSA for diagnosing the oral cancer. Biomedical Signal Processing and Control. 2023;84:104749. Available from: https://doi.org/10.1016/j.bspc.2023.104749
  4. Myriam H, Abdelhamid AA, El-Kenawy ESMSM, Ibrahim A, Eid MM, Jamjoom MM, et al. Advanced Meta-Heuristic Algorithm Based on Particle Swarm and Al-Biruni Earth Radius Optimization Methods for Oral Cancer Detection. IEEE Access. 2023;11:23681–23700. Available from: https://doi.org/10.1109/ACCESS.2023.3253430
  5. Ding H, Huang Q, Rodriguez D. Modified Locust Swarm optimizer for oral cancer diagnosis. Biomedical Signal Processing and Control. 2023;83:104645. Available from: https://doi.org/10.1016/j.bspc.2023.104645
  6. Gao J, Lyu T, Xiong F, Wang J, Ke W, Li Z. MGNN: A Multimodal Graph Neural Network for Predicting the Survival of Cancer Patients. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020.
  7. Soltani R, Jaouadi A. Institute of Electrical and Electronics Engineers (IEEE). Available from: https://doi.org/10.36227/techrxiv.20408919.v1
  8. Miarnaeimi F, Azizyan G, Rashki M. Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems. 2021;213:106711.
  9. Yazdani R, Alipour-Vaezi M, Kabirifar K, Salahi Kojour A, Soleimani F. A lion optimization algorithm for an integrating maintenance planning and production scheduling problem with a total absolute deviation of completion times objective. Soft Computing. 2022;26(24):13953–13968.
  10. Figueroa KC, Song B, Sunny S, Li S, Gurushanth K, Mendonca P, et al. Interpretable deep learning approach for oral cancer classification using guided attention inference network. Journal of Biomedical Optics. 2022;27(01):15001. Available from: https://doi.org/10.1117/1.JBO.27.1.015001
  11. Saber A, Sakr M, Abo-Seida OM, Keshk A, Chen H. A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique. IEEE Access. 2021;9:71194–71209. Available from: https://doi.org/10.1109/ACCESS.2021.3079204


2023 Subbulakshmi & Nagarajan.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.