• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 20, Pages: 1642-1646

Original Article

A Proposed Technique to Resolve Transportation Problem by Trapezoidal Fuzzy Numbers


Objectives: To find the best optimal solution of transportation problem in fuzzy environment Method: We proposed a new method to find the optimal solution. Findings: This study introduces a Median method. By applying the same we transform the fuzzy transportation problem to an exquisite valued one and subsequently into a new proposed process to uncover the fuzzy realistic solution. Also, we find a minimum transportation cost. Novelty: The numerical illustration demonstrates that the new projected method for managing the transportation problems on fuzzy algorithms.

AMS Mathematics Subject Classification (2010): 90C08, 90C90


Median, Median of Trapezoidal Fuzzy Numbers, Median of Triangular Fuzzy Numbers, Trapezoidal Fuzzy Numbers, Transportation Problem, and Fuzzy Transportation Problem


  1. Zadeh LA. Fuzzy sets. Information and Control. 1965;8:338–353. Available from: https://dx.doi.org/10.1016/s0019-9958(65)90241-x
  2. Zimmermann HJ. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems. 1978;1(1):45–55. Available from: https://dx.doi.org/10.1016/0165-0114(78)90031-3
  3. Srinivasan R, Muruganandam S. A new algorithm for solving fuzzy transportation problem with trapezoidal fuzzy numbers. International Journal of Recent Trends in Engineering and Research. 2016;2(3):428–437. Available from: 10.3923/ajit.2016.3501.3505
  4. Srinivasan R. The Modified method for solving fully fuzzy transportation problem. Global Journal for Research analysis. 2016;5(4):177–179. Available from: https://www.doi.org/10.36106/gjra
  5. Srinivasan R, Muruganandam S, Vijayan V. A new algorithm for solving fuzzy transportation problem with triangular fuzzy number. Asian Journal of Information Technology. 2016;15(18):3501–3505. Available from: 10.36478/ajit.2016.3501.3505
  6. Ghosh S, Roy SK, Ebrahimnejad A, Verdegay JL. Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex & Intelligent Systems. 2021;7:1009–1023. Available from: https://dx.doi.org/10.1007/s40747-020-00251-3
  7. Bharati SK. Transportation problem with interval-valued intuitionistic fuzzy sets: impact of a new ranking. Progress in Artificial Intelligence. 2021;10:129–145. Available from: https://doi.org/10.1007/s13748-020-00228-w
  8. Sam'an M, Farikhin. A new fuzzy transportation algorithm for finding the fuzzy optimal solutions. International Journal of Mathematical Modelling and Numerical Optimisation. 2021;11(1):1–19. Available from: 10.1504/IJMMNO.2021.111715
  9. Srinivasan R, Karthikeyan N, Renganathan K, Vijayan DV. Method for solving fully fuzzy transportation problem to transform the materials. Materials Today: Proceedings. 2021;37:431–433. Available from: https://dx.doi.org/10.1016/j.matpr.2020.05.423
  10. Karthikeyan N, Mohamed Y. Solving Fuzzy Transportation problem using Distance ranking Method for Trapezoidal Fuzzy Numbers. Journal of Emerging Technologies and innovative research. 2018;5(5):25–29. Available from: 10.6084/m9.jetir.JETIR1805688
  11. Geetha SS, Selvakumari K. A New Method for Solving Fuzzy Transportation Problem Using Pentagonal Fuzzy Numbers. Journal of Critical Reviews. 2020;7(9):171–174. Available from: 10.31838/jcr.07.09.34


© 2021 Srinivasan et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.