• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2015, Volume: 8, Issue: 32, Pages: 1-7

Original Article

A Rotated Crank-Nicolson Iterative Method for the Solution of Two-Dimensional Time-Fractional Diffusion Equation


This paper aims to examine the effectiveness of a rotated iterative method to solve the two-dimensional time fractional diffusion equations which are used when describing transport processes with long memory where the rate of diffusion is inconsistent with the classical Brownian motion model. This type of equation is obtained by replacing the first order time derivative in the standard diffusion equation with a fractional derivative of order α, where 0 < α < 1, in accordance with Riemann-Liouville or Caputo. The developed method is derived from the Standard Crank-Nicolson (S(C-N)) scheme by rotating clockwise 45o with respect to the standard mesh. The study demonstrates the enhanced efficiency and superiority of the Rotated Crank-Nicolson (R(C-N)) method which overall reduces the CPU consumption time.
Keywords: Caputo’s Fractional Derivative, Crank-Nicolson Schemes, Diffusion Equation, Gauss–Seidel Method, Rotated Crank-Nicolson Schemes, Time Fractional


Subscribe now for latest articles and news.