• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 17, Pages: 1250-1259

Original Article

A Study on Refractive Error in Patients of Chennai City in India during Covid 19 Pandemic Period

Received Date:21 June 2022, Accepted Date:26 March 2023, Published Date:28 April 2023


Objectives: To compare the results of techniques Decision Tree, Discriminant, KNN, SVM applied to pre Covid-19 data collected in 2018 and data collected during Covid-19 pandemic period (2020) patients in Chennai city. Methods: The variables in the data are Refractive Error in both left and right eye, Age, Gender, Educational Status, Employment Status, Nature of Job, Working Hours, Working with Computer, Watching TV, Sleeping Hours, Type of Food, Extra Activity, Light in Residence, Light in Work Place, Family Members Wearing Specs, Parents Wearing Specs, Other Disease and Other eye disease. Findings: In this study, 22 classification algorithms were applied to the data, and accuracy results as well as comparisons in two distinct sample sizes were obtained. Although adhering to the strict lockdown regulations helps to prevent the spread of COVID-19, it also negatively affects the visual health of those who are confined to their homes and have limited access to outdoor activities, leading to an excessive confidence on digital screens for studies or leisure. Novelty: Due to public health restrictions, the present Covid 19 pandemic has altered people’s social lives all around the world. As a result, kids have spent more time in front of computer and television monitor screens, which is bad for their eyes. Refractive error affects a significant number of patients in Chennai. Across all kinds of refractive defects, myopia, hyperopia, astigmatism, and presbyopia constitute the most prevalent.

Keywords: Covid19; Refractive error; KNN; SVM; Decision Tree; Discriminant


  1. Abraham EEG, Olumegbelayin. Pattern of Refractive Errors among Ophthalmic Outpatients of University of Uyo Teaching Hospital. Nigerian Journal of Ophthalmology. 2015;(23). Available from: https://doi.org/10.4103/0189-9171.170965
  2. Prieto-Garrido FL, Verdejo JLH, Villa-Collar C, Ruiz-Pomeda A. Predicting factors for progression of the myopia in the MiSight assessment study Spain (MASS) Journal of Optometry. 2022;15(1):78–87. Available from: https://doi.org/10.1016/j.optom.2020.11.003
  3. Shobana G, Bushra SN. Classification of Myopia in Children using Machine Learning Models with Tree Based Feature Selection. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). 2020;p. 1599–1605. Available from: https://doi.org/10.1109/ICECA49313.2020.9297623
  4. Sheeladevi S, Bharaniseelam, Phanindra B, Nukella, Rishi R, Borah R, et al. Prevalence of refractive errors, uncorrected refractive error, and presbyopia in adults in India: A systematic review. Indian Journal of Ophthalmology. 2019;67(5):583–592. Available from: https://doi.org/10.4103/ijo.IJO_1235_18
  5. Vashist P, Senjam SS, Gupta V, Manna S, Agrawal S, Gupta N, et al. Community eye-health and vision center guidelines during COVID-19 pandemic in India. Indian Journal of Ophthalmology. 2020;68(7):1306. Available from: https://doi.org/10.4103/ijo.IJO_1527_20
  6. Pooprasert P, Ahnood D, Parmar T, Wang W, Young-Zvandasara T, Morgan J. Prevalence of refractive error, visual impairment and access to eyecare for the homeless in Wales, United Kingdom. Eye. 2021;35(10):2727–2732. Available from: https://doi.org/10.1038/s41433-020-01271-6
  7. Caroline CW, Klaver. Roel of polling, Clair A Enthoven. 2020 as the Year of Quarantine Myopia. JAMA ophthalmology. 2021;139(3):300–301. Available from: https://pubmed.ncbi.nlm.nih.gov/33443551/
  8. Gopi G, Prabakaran TE, . A study on refractive error in patients of Chennai city in India, using multinomial logistic regression”. International Journal of Statistics and Applied Mathematics. 2018;3. Available from: https://www.mathsjournal.com/pdf/2018/vol3issue3/PartC/3-3-29-283.pdf
  9. Gopi G, Prabakaran TE. k-Neighbor Method for Prediction Of Refractive Errors In Patients Of Chennai City In India. JP Journal of Biostatistics. 2022;20:51–63.
  10. Amruta S, Padhye R, Khandekar1 S, Dharmadhikari K, Dole P, Gogate M, et al. Prevalence of Uncorrected Refractive Error and Other Eye Problems among Urban and Rural School Children. 2009. Available from: https://doi.org/10.4103/0974-9233.53864
  11. Shmilovici A. Support Vector Machines. In: Data Mining and Knowledge Discovery Handbook. (pp. 231-247) Springer US. 2009.
  12. Vapnik V, Chapelle O. Bounds on Error Expectation for Support Vector Machines. Neural Computation. 2000;12(9):2013–2036. Available from: https://pubmed.ncbi.nlm.nih.gov/10976137/
  13. Raikwal JS, KS. Performance Evaluation of SVM and K-Nearest Neighbor Algorithm over Medical Data set. International Journal of Computer Applications. 2012;50(14):39. Available from: https://research.ijcaonline.org/volume50/number14/pxc3881055.pdf
  14. Gou J, Ma H, Ou W, Zeng S, Rao Y, Yang H. A generalized mean distance-based k-nearest neighbor classifier. 2019. Available from: https://doi.org/10.1016/j.eswa.2018.08.021
  15. Sheekhamis H, Kipruto W, Cheruiyot S, Kimani. Application of k- Nearest Neighbour Classification in Medical Data Mining. International Journal of Information and Communication Technology Research. 2014;4(4). Available from: https://www.researchgate.net/publication/270163293_Application_of_k-Nearest_Neighbour_Classification_in_Medical_Data_Mining
  16. Shouman M, Turner T, Stocker R. Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients. International Journal of Information and Education Technology. 2012;2(3):220–223. Available from: http://www.ijiet.org/papers/114-K0009.pdf
  17. Pradip A, Sarkate PAV, Deorankar. Classification of Chemical Medicine or Drug using K nearest Neighbor (KNN) and Genetic Algorithm. International Research Journal of Engineering and Technology (IRJET). 2018. Available from: https://www.irjet.net/archives/V5/i3/IRJET-V5I3188.pdf
  18. Jabbar A, Deekshatulu B, Chandra P. Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm. International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 2013, Procedia Technology. 2013;10:85–94. Available from: https://doi.org/10.1016/j.protcy.2013.12.340


© 2023 Gopi & Prabakaran. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.