• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 36, Pages: 3785-3800

Original Article

Explicit specification framework to manage software project effectively

Received Date:28 June 2020, Accepted Date:19 September 2020, Published Date:12 October 2020


Objectives: This research addresses the causal relationship among processes, tasks, resources, and stakeholders of the software projects to improve the success rate that is 31% only now (CHAOS report 2019). Methods: A software project management framework is developed based on the findings of an empirical study on recent commonly used methodologies and root cause analysis on the reasons for project failure. The causeeffect relationship is prioritized by Structural Equation Modeling (SEM) to develop the Explicit Specification Framework (ESF). The framework is tied to the pinpointing with ontology for formal presentation, descriptive logic for unambiguous information specification, and ikigai for decision-making.Findings: The proposed framework is evaluated by a group of experts and their average scope is evaluated by a group comparison mechanism called Grey Rational Analysis (GRA). The evaluation process considered 6 parameters and compared it with 4 commonly used project management approaches. The highest GRA rank is found for the average of six distinct parameters though it is comparatively more complex for explicit documentation. The three-layer architecture of ESF remarks on roles, functions, and respective stakeholders in each layer presented by a comprehensive comparison study with literature and found that it enhances formal practice, sustainability, and management capability. ESF is easy to implement for distributed project management and improving automation facilities in the software industries.Novelty/Application: Artificial intelligence, the Internet of things, and big data would be common elements of a software project and ESF would meet the demand for project information specification, management, and control.

Keywords: Software Project Management; Software Quality Control; methodology; multi- criteria decision making; structural educational modeling; ontology


  1. Abran A;, Moore JW, Bourque P;, Dupuis R;, Tripp LL. Guide to the Software Engineering Body of Knowledge. IEEE. 2004.
  2. The Standish Group International CHAOS Report. 2015. Available from: https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
  3. Gruber T. Toward Principles for the Design of Ontologies Used for Knowledge Sharing. Int. J. Hum. Comp. Stud. 1995;43:907–928.
  4. Uschold M, Gruninger M. Ontologies: principles, methods and applications. The Knowledge Engineering Review. 1996;11(2):93–136. doi: 10.1017/s0269888900007797
  5. Gomez-Perez A, Corcho O. Ontology languages for the Semantic Web. IEEE Intelligent Systems. 2002;17(1):54–60. doi: 10.1109/5254.988453
  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nature Genetics. 2000;25(1):25–29. doi: 10.1038/75556
  7. Jonquet C. AgroPortal: A vocabulary and ontology repository for agronomy. Computers and Electronics in Agriculture. 2018;144:126–143.
  8. Fluit C, Sabou M, Harmelen FV. Ontology-based information visualization: toward semantic web applications. Springer. 2006.
  9. Cherix D, Usbeck R, Both A, Lehmann J, Presutti V, Blomqvist E, et al. Lessons learned - the case of CROCUS: cluster-based ontology data cleansing. In: P, IaT, A., eds. The Semantic Web: ESWC 2014 Satellite Events. (Vol. 8798, pp. 14-24) Springer. 2014.
  10. Sarker KU, Deraman A. Design Aspects of Near Future Soft Computing. International Journal of Electronics Communication and Computer Engineering. 2017;8(5):2249–071.
  11. Sarker DKU, Deraman RA, Hasan. Kids’ Smart Campus Ontology to Retrieve Interest. In: Green Soft Computing, Conference: ICEL3S2018. (pp. 462-470) 2018.
  12. Sarker KU, Bin Deraman A, Hasan R, Mahmood S, Abbas A, Sohail M. Kids’ Smart Campus Ontology to Retrieve Interest. In: 4th MEC International Conference on Big Data and Smart City (ICBDSC). (pp. 1-4) 2019.
  13. Kamiya M. Ikigai-ni-tsuite. Tokyo, Japan. MisuzuShyobou. 1966.
  14. Kumano M. K., ed. Ikigai-keisei-no-shinrigaku [A psychology of ikigai development. Tokyo, Japan. 2012.
  15. Schwalbe K. Project management approach to IT projects. Tehran, Institute of. Tehran University Press. 2010.
  16. Martin P, Tate K. Project management, translated by Mohsen Zokayee. Tehran. Adineh press. 2003.
  17. Tilmann G, Weinberger J. Technology never fails, but project can. Baseline. 2004;1(26):28. doi: 10.1515/gpr.2004.1.4.182
  18. Klein HK, Meyers MD. MIS Quarterly. 1999;23:67–94.
  19. Mandal A, SC. Identifying the Reasons for Software Project Failure and Some of their Proposed Remedial through BRIDGE Process Models. International Journal of Computer Sciences and Engineering. 2015;(1).
  20. Bergel A, Denier S, Ducasse S, Laval J, Bellinguard F, Vaillergues P, et al. SQUALE - Software QUALity Enhancement. In: 13th European Conference on Software Maintenance and Reengineering. (pp. 285-288) 2009.
  21. Kline R. Principles and Practice of Structural Equation Modeling. Guilford. 2011;p. 978–979.
  22. Zha XF, Sriram RD, Fernandez MG, Mistree F. Knowledge-intensive collaborative decision support for design processes: A hybrid decision support model and agent. Computers in Industry. 2008;59(9):905–922. doi: 10.1016/j.compind.2008.07.009
  23. Sahin Z, Yenmez AA, Erbas AK. Relational Understanding of the Derivative Concept through Mathematical Modeling: A Case Study. EURASIA Journal of Mathematics, Science and Technology Education. 2015;11(1):177–188. doi: 10.12973/eurasia.2015.1149a
  24. Hsu MW. An Analysis of Intention to Use in Innovative Product Development Model through TAM Model. Eurasia Journal of Mathematics. 2016;12(3):487–501.
  25. Yassien E. Software Projects Success by Objectives. Journal of Management Research. 2017;10(1):46. doi: 10.5296/jmr.v10i1.10149
  26. Brachman RJ, Mcguinness DL, Patel-Schneider PF, Resnick LA, Borgida A. Living with CLASSIC: When and how to use KL-ONE-like language. In: JFS., ed. Principles of Semantic Networks. (pp. 401-456) Morgan Kaufmann. 1991.
  27. Mende T, Koschke R. Effort-Aware Defect Prediction Models. Proceedings of the 2010 14th European Conference on Software Maintenance and Reengineering. CSMR’10. 2010;p. 107–116.
  28. K, Bruel. Beyond tomorrow Scenarios 2030: The future of product development, Copenhagen Institute for Futures Studies. A/S Skodsborgvej 307 DK-2850 Nærum Denmark. Sound & Vibration Measurement . 2017.
  29. Lehtinen TOA, Mäntylä MV, Vanhanen J, Itkonen J, Lassenius C. Perceived causes of software project failures – An analysis of their relationships. Information and Software Technology. 2014;56(6):623–643. doi: 10.1016/j.infsof.2014.01.015
  30. Verner JM, Abdullah LM. Exploratory case study research: Outsourced project failure. Information and Software Technology. 2012;54(8):866–886. doi: 10.1016/j.infsof.2011.11.001
  31. Pardo C, Pino FJ, Garcia F, Baldassarre MT, Piattini M. From chaos to the systematic harmonization of multiple reference models: A harmonization framework applied in two case studies. Journal of Systems and Software. 2013;86(1):125–143. doi: 10.1016/j.jss.2012.07.072
  32. Bajnaid NO, Benlamri R, Pakstas A, SS. An Ontological Approach to Model Software Quality Assurance Knowledge Domain. Lecture Notes on Software Engineering. 2016;4(3).
  33. Buglione L. Some thoughts on quality models: evolution and perspectives. Acta IMEKO. 2015;4(3).


© 2020 Sarker et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.