• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 44, Pages: 2375-2385

Original Article

A Study on Structural and Textural Feature Extraction for Contactless Fingerprint Classification

Received Date:19 August 2022, Accepted Date:29 September 2022, Published Date:30 November 2022


Objectives: The Recent COVID 19 Pandemic has capped the efficacy of the mostly used existing touch-based fingerprint detection. Hence, the main objective of this study is to develop a lightweight, robust and efficient touchless fingerprint identification model. To cope up with touchless environment demands, an emphasis is made on improvement in local conditions, feature modalities as well as learning environment. Methods: Considering these objectives, the focus of this study is on two different methods for classification of contactless fingerprint. In the first method structural features like minutiae details are extracted followed by classification by SSIM. In the second method GLCM textural features were extracted followed by classification using Random Forest algorithm. In the proposed method, performance assessment is done by considering data samples of 1000 random users that are collected from different benchmark databases like Hong Kong Polytechnic University 3D-fngerprint images Database Version 2.0, Touchless Fingerprint Database of IIT Bombay, IIT Kanpur, IIT Jodhpur. Findings: Though, touchless fingerprint detection is considered as a viable alternative; yet, the real-time data complexities like non-linear textural patterns, dusts, non-uniform local conditions like illumination, contrast, orientation make it complex for realization. Moreover, the likelihood of ridge discontinuity and texture damages can majorly limit its efficacy. Novelty: The proposed model mainly focusses on reducing Equal Error Rate and improving the accuracy of contactless fingerprint classification by extracting textural features rather just sticking to conventional structural feature-minutiae. The Proposed method outperforms when compared with the existing state of the art methods by achieving an accuracy of 94.72%, precision of 98.84%, recall of 97.716%, FMeasure 0.9827 and a reduced EER of about 0.084. The key novelty of this approach was that it doesn’t require any surface 3D reconstruction, rather it employed different mathematical approaches to retrieve surface normal and minutiae information.

Keywords: SSIM; GLCM; Contactless Fingerprint; Minutiae; EER; Confusion Matrix


  1. N, SV, Vendhan A, M. Rejuvenation of online research interactive fora during COVID-19. Indian Journal of Science and Technology. 2020;13(47):4603–4605. Available from: https://doi:10.17485/IJST/v13i47.2230
  2. Wild P, Daubner F, Penz H, Dominguez GF. Comparative Test of Smartphone Finger Photo vs. Touch-based Cross-sensor Fingerprint Recognition. 2019 7th International Workshop on Biometrics and Forensics (IWBF). 2019;p. 1–6. Available from: https://doi:10.1109/IWBF.2019.8739191
  3. Deepika KC, Shivakumar G. Towards More Accurate Touchless Fingerprint Classification Using Deep Learning and SVM. Data Science and Computational Intelligence. International Conference on Information Processing, Data Science and Computational Intelligence pp. 2021;p. 248–257. Available from: https://doi.org/10.1007/978-3-030-91244-4_20
  4. Deepika KC, Shivakumar G. A Robust Deep Features Enabled Touchless 3D-Fingerprint Classification System. SN Computer Science. 2021;2(4):263. Available from: https://doi.org/10.1007/s42979-021-00657-x
  5. Sagiroglu S, Ulker M, Arslan B. Mobile Touchless Fingerprint Acquisition And Enhancement System. 2020 IEEE Congress on Evolutionary Computation (CEC). 2020;p. 1–8. Available from: https://doi:10.1109/CEC48606.2020.9185870
  6. Priesnitz J, Rathgeb C, Buchmann N, Busch C, Margraf M. An overview of touchless 2D fingerprint recognition. EURASIP Journal on Image and Video Processing. 2021;2021(1). Available from: https://doi.org/10.1186/s13640-021-00548-4
  7. Priesnitz J, Rathgeb C, Buchmann N, Busch C. Touchless Fingerprint Sample Quality: Prerequisites for the Applicability of NFIQ2.0. International Conference of the Biometrics Special Interest Group (BIOSIG). 2020;p. 1–5.
  8. Deepika KC, Shivakumar G. Local Pre-Conditioning and Quality Enhancement to Handle Different Data Complexities in Contactless Fingerprint Classification. International Journal of Advanced Computer Science and Applications (IJACSA). 2022;13(8). Available from: https://doi:10.14569/IJACSA.2022.0130875
  9. Tan H, Kumar A. Towards More Accurate Contactless Fingerprint Minutiae Extraction and Pose-Invariant Matching. IEEE Transactions on Information Forensics and Security. 2020;15:1. Available from: https://doi:10.1109/TIFS.2020.3001732
  10. Attrish A, Bharat N, Anand V, Kanhangad V. A Contactless Fingerprint Recognition System. Available from: https://doi.org/10.48550/arXiv.2108.09048
  11. Birajadar P, Haria M, Kulkarni P, Gupta S, Joshi P, Singh B, et al. Towards smartphone-based touchless fingerprint recognition. Sādhanā. 2019;44(7):161. Available from: https://doi.org/10.1007/s12046-019-1138-5
  12. Yin X, Zhu Y, Hu J. 3D Fingerprint Recognition based on Ridge-Valley-Guided 3D Reconstruction and 3D Topology Polymer Feature Extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021;43(3):1085–1091. Available from: https://doi:10.1109/TPAMI.2019.2949299
  13. Galbally J, Beslay L, Bostrom G. 3D-FLARE: A Touchless Full-3D Fingerprint Recognition System Based on Laser Sensing. IEEE Access. 2020;8:145513–145534. Available from: https://doi:10.1109/ACCESS.2020.3014796
  14. Bakheet S, Alsubai S, Alqahtani A, Binbusayyis A. Robust Fingerprint Minutiae Extraction and Matching Based on Improved SIFT Features. Applied Sciences. 2022;12(12):6122. Available from: https://doi.org/10.3390/app12126122
  15. Priesnitz J, Huesmann R, Rathgeb C, Buchmann N, Busch C. Mobile Contactless Fingerprint Recognition: Implementation, Performance and Usability Aspects. Sensors. 2022;22(3):792. Available from: https://doi.org/10.3390/s22030792


© 2022 Deepika & Shivakumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.