• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 5, Pages: 436-450

Original Article

Adaptive RPL Routing Optimization Model for Multimedia Data Transmission using IOT

Received Date:17 October 2023, Accepted Date:27 November 2023, Published Date:27 January 2024


Objectives: The main objectives of this research endeavor encompass the development of the Adaptive RPL Optimization (ARPLO) model to enhance data transmission efficiency within IoT networks. This includes constructing a grid-based network structure optimized for data transfer, selecting the most suitable nodes as grid head nodes to maximize network lifespan while minimizing energy consumption, implementing an innovative objective function-driven approach to optimize parent node selection, and integrating an Adaptive Deep Neural Network (ADNN) to accurately classify medical data. Methods: The research methodology entails several key steps. A grid-based network structure is established with IoT nodes and root nodes, where a DODAG process incorporating DIO messages is utilized for node ranking. To enhance energy efficiency, the Trickle algorithm is employed for control message optimization. Grid head nodes are chosen based on metrics such as root node fairness, residual energy, and load influence index. The novel Middle Order Optimal Routing (MOOR) objective function is utilized to optimize routing decisions. ADNN is implemented for precise medical data classification. The proposed model's performance is evaluated through simulation in a Python environment. Findings: The research findings demonstrate that the ARPLO model yields notable benefits compared to existing models. It achieves higher energy efficiency, improved throughput, enhanced packet delivery ratio (PDR), and an extended network lifespan. The Trickle algorithm contributes to efficient control message optimization. The MOOR-based routing approach improves multimedia medical data transfer. Moreover, the integration of ADNN enhances the accuracy of data classification, particularly in healthcare applications. The research outcomes align with the broader field's existing values and reports while offering novel insights that contribute to enhancing the existing knowledge base. ARPLO protocol performance reveals that there is increase of throughput of 31.2%, PDR by 7.12%, lifetime of 10.7 % with reduction of energy consumption by 12.72%, control overhead by 31.01% and end-to-end delay by 33.01%. Novelty: The novelty of this research lies in its comprehensive approach that integrates a grid-based network structure, MOOR-based optimization, and ADNN-based classification. The incorporation of the Trickle algorithm for energy-efficient communication is an innovative feature. The introduction of new metrics for grid head node selection, along with the application of the MOOR objective function for multimedia medical data routing, showcases the research's innovative contributions.

Keywords: Internet of Things (IoT), RPL (Routing Protocol for Low­Power and Lossy Networks), Optimization, Routing, Multimedia, Healthcare


  1. Ambika K, Malliga S. Secure hyper intelligence in routing protocol with low-power (RPL) Networks in IoT. Advances in Engineering Software. 2022;173:103247. Available from: https://doi.org/10.1016/j.advengsoft.2022.103247
  2. Bouacheria I, Bidai Z, Kechar B, Sailhan F. Leveraging Multi-Instance RPL Routing Protocol to Enhance the Video Traffic Delivery in IoMT. Wireless Personal Communications. 2021;116(4):2933–2962. Available from: https://doi.org/10.1007/s11277-020-07828-8
  3. Shah Z, Levula A, Khurshid K, Ahmed J, Ullah I, Singh S. Routing Protocols for Mobile Internet of Things (IoT): A Survey on Challenges and Solutions. Electronics. 2021;10(19):1–29. Available from: https://doi.org/10.3390/electronics10192320
  4. Nazaralipoorsoomali M, Asghari P, Javadi SHHS. Performance improvement of Routing Protocol for Low‐Power and Lossy Networks protocol in an Internet of Things‐based smart retail system. International Journal of Communication Systems. 2022;35(10). Available from: https://doi.org/10.1002/dac.5166
  5. Pancaroglu D, Sen S. Load balancing for RPL-based Internet of Things: A review. Ad Hoc Networks. 2021;116:102491. Available from: https://doi.org/10.1016/j.adhoc.2021.102491
  6. Singh D, Maurya AK, Dewang RK, Keshari N. A review on Internet of Multimedia Things (IoMT) routing protocols and quality of service. Internet of Multimedia Things (IoMT). 2022;p. 1–29. Available from: https://doi.org/10.1016/B978-0-32-385845-8.00006-X
  7. Mehbodniya A, Webber JL, Rani R, Ahmad SS, Wattar I, Ali L, et al. Energy-Aware Routing Protocol with Fuzzy Logic in Industrial Internet of Things with Blockchain Technology. Wireless Communications and Mobile Computing. 2022;2022:1–15. Available from: https://doi.org/10.1155/2022/7665931
  8. Poornima MR, Vimala HS, Shreyas J. Holistic survey on energy aware routing techniques for IoT applications. Journal of Network and Computer Applications. 2023;213. Available from: https://doi.org/10.1016/j.jnca.2023.103584
  9. Ekpenyong ME, Asuquo DE, Udo IJ, Robinson SA, Ijebu FF. IPv6 Routing Protocol Enhancements over Low-power and Lossy Networks for IoT Applications: A Systematic Review. New Review of Information Networking. 2022;27(1):30–68. Available from: https://doi.org/10.1080/13614576.2022.2078396
  10. Chiti F, Fantacci R, Pierucci L. A Green Routing Protocol with Wireless Power Transfer for Internet of Things. Journal of Sensor and Actuator Networks. 2021;10(1):1–14. Available from: https://doi.org/10.3390/jsan10010006
  11. Swaminathan S, Sankaranarayanan S, Kozlov S, Rodrigues JJPC. Compression-Aware Aggregation and Energy-Aware Routing in IoT–Fog-Enabled Forest Environment. Sensors. 2021;21(13):1–18. Available from: https://doi.org/10.3390/s21134591
  12. Charles ASJ, Kalavathi P. A reliable link quality-based RPL routing for Internet of Things. Soft Computing. 2022;26(1):123–135. Available from: https://doi.org/10.1007/s00500-021-06443-4
  13. Shetty SP, Shenoy UKK. Performance of RPL under various mobility models in IoT. International Journal of Autonomous and Adaptive Communications Systems. 2023;16(3):248–269. Available from: https://doi.org/10.1504/ijaacs.2023.131621
  14. Pingale RP, Shinde SN. Multi-objective Sunflower Based Grey Wolf Optimization Algorithm for Multipath Routing in IoT Network. Wireless Personal Communications. 2021;117(3):1909–1930. Available from: https://doi.org/10.1007/s11277-020-07951-6
  15. Fawwaz DZ, Chung SHH. Adaptive Trickle Timer for Efficient 6TiSCH Network Formation Using Q-Learning. IEEE Access. 2023;11:37931–37943. Available from: https://doi.org/10.1109/ACCESS.2023.3265717
  16. Seyfollahi A, Ghaffari A. A Review of Intrusion Detection Systems in RPL Routing Protocol Based on Machine Learning for Internet of Things Applications. Wireless Communications and Mobile Computing. 2021;2021:1–32. Available from: https://doi.org/10.1155/2021/8414503
  17. Refaee E, Parveen S, Begum KMJ, Parveen F, Raja MC, Gupta SK, et al. Secure and Scalable Healthcare Data Transmission in IoT Based on Optimized Routing Protocols for Mobile Computing Applications. Wireless Communications and Mobile Computing. 2022;2022:1–12. Available from: https://doi.org/10.1155/2022/5665408
  18. Musaddiq A, Zikria YB, Zulqarnain, Kim SW. Routing protocol for Low-Power and Lossy Networks for heterogeneous traffic network. EURASIP Journal on Wireless Communications and Networking. 2020;2020:1–23. Available from: https://doi.org/10.1186/s13638-020-1645-4
  19. Alsukayti IS, Alreshoodi M. RPL-Based IoT Networks under Simple and Complex Routing Security Attacks: An Experimental Study. Applied Sciences. 2023;13(8):1–23. Available from: https://doi.org/10.3390/app13084878
  20. Shahbakhsh P, Ghafouri SH, Bardsiri AK. RAARPL: End‐to‐end Reliability‐Aware Adaptive RPL routing protocol for Internet of things. International Journal of Communication Systems. 2023;36(6). Available from: https://doi.org/10.1002/dac.5445
  21. Shashidhar PK, Tanuja TC, Kunabeva R. Middle-Order Clustering Technique-Based Integrated Approach For Biomedical Data Transmission Over Multimedia Iot (Miot) Network. Journal Of Tianjin University Science And Technology Issn. 2022;55(7):214–237. Available from: https://tianjindaxuexuebao.com/details.php?id=DOI:10.17605/OSF.IO/VK8J7
  22. Din MSU, Rehman MAU, Ullah R, Park CW, Kim DH, Kim BS. Improving resource-constrained IoT device lifetimes by mitigating redundant transmissions across heterogeneous wireless multimedia of things. Digital Communications and Networks. 2022;8(5):778–790. Available from: https://doi.org/10.1016/j.dcan.2021.09.004


© 2024 Shashidhar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.