• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 16, Pages: 1686-1692

Original Article

Admittance spectroscopy analysis of dye-sensitised solar cells with host-guest complexes

Received Date:09 April 2020, Accepted Date:04 May 2020, Published Date:10 June 2020

Abstract

Objective: The objective of this study was to assess the influence of encapsulation of cis-bis(isothiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylato)(4,4'-di-nonyl-2'- bipyridyl) ruthenium(II) (Z907 dye) to macrocycle cucurbit[7]uril (CB7) (host) on the performance of nanocrystalline titanium dioxide (nc-TiO2)/ poly3-hexylthiophene (P3HT) heterojunction solar cell. Method: Two solar cells composed of five layers with and without the encapsulation of Z907 dye on the top of TiO2 film were used. The admittance spectroscopy was measured at different frequencies to confirm the modification of the interfacial layers' properties in solar cells. Findings: The results demonstrated different capacitance responses depending on the voltage applied to the devices. The encapsulated device had a higher capacitance response to forward bias and reverse bias than the non-encapsulated device at the same frequency. The negative capacitance of the two devices was also observed. The results were attributed to an increase in the accumulation of charge carriers and the formation of electric dipoles at the junction which rapidly decreased the capacitance to negative values. Application: This study demonstrated that using encapsulation of dye improved the solar cells' maximum electric power to 0.14mW/cm2 , while it was 0.04 mW/cm2 in the non-encapsulated solar cells.

Keywords: Solar cells; Junction capacitance; X-ray diffraction; SEM micrograph; Geometric capacitance 

References

  1. Ammar AM, Mohamed HSH, Yousef MMK, Abdel-Hafez GM, Hassanien AS, Khalil ASG. Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. Journal of Nanomaterials. 2019;2019:1–10. doi: 10.1155/2019/1867271
  2. Liao Y, Lin P, Chen Y, Kuang B, Su Y. High-performance dye-sensitized solar cells based on hierarchical yolk-shell anatase TiO2 beads. Journal of Materials and Chemsitry. 2012;22(4):1627–1633. doi: 10.1039/c1jm14489h
  3. Al-Dmour H, Taylor DM, Cambridge JA. Effect of nanocrystalline-TiO2 morphology on the performance of polymer heterojunction solar cells. Journal of Physics D: Applied Physics. 2007;40(17):5034–5038. doi: 10.1088/0022-3727/40/17/004
  4. Fitra M, Daut I, Irwanto M, Gomesh N, Irwan YM. Effect of TiO2 Thickness Dye Solar Cell on Charge Generation. Energy Procedia. 2013;36:278–286. doi: 10.1016/j.egypro.2013.07.032
  5. Yan M, Lane M, Kannewurf CR, Chang RPH. Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Applied Physics Letters. 2001;78(16):2342–2344. doi: 10.1063/1.1365410
  6. Fortunato E, Barquinha P, Martins R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Advanced Materials. 2012;24(22):2945–2986. doi: 10.1002/adma.201103228
  7. Zhang L, Cole JM. Dye aggregation in dye-sensitized solar cells. Journal of Materials Chemistry A. 2017;5(37):19541–19559. doi: 10.1039/c7ta05632j
  8. Wang ZS, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells:  Electron Lifetime Improved by Coadsorption of Deoxycholic Acid. The Journal of Physical Chemistry C. 2007;111(19):7224–7230. doi: 10.1021/jp067872t
  9. Ito S, Zakeeruddin S , Humphry-Baker R, Liska P, Charvet R, Comte P, et al. High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Advanced Materials. 2006;18(9):1202–1205. doi: 10.1002/adma.200502540
  10. Schölin R, Quintana M, Johansson EMJ, Hahlin M, Marinado T, Hagfeldt A, et al. Preventing Dye Aggregation on ZnO by Adding Water in the Dye-Sensitization Process. The Journal of Physical Chemistry C. 2011;115(39):19274–19279. doi: 10.1021/jp206052t
  11. Choi H, Kang S, Ko J, Gao G, Kang H, Kang MS, et al. An Efficient Dye-Sensitized Solar Cell with an Organic Sensitizer Encapsulated in a Cyclodextrin Cavity. Angewandte Chemie International Edition. 2009;48(32):5938–5941. doi: 10.1002/anie.200902013
  12. Al-Dmour H, Alzard RH, Alblooshi H, Alhosani K, AlMadhoob S, Saleh N. Enhanced Energy Conversion of Z907-Based Solar Cells by Cucurbit[7]uril Macrocycles. Frontiers in Chemistry. 2019;7(561):1–9. doi: 10.3389/fchem.2019.00561
  13. C K. Introduction To Solid State physics. Wiley publisher edition. 2004.
  14. Wamg Y, Tseng Y. Analysis of AC electrical response for radio-frequency sputtered (Ba0.5Sr0.5)TiO3 thin film. Thin Solid Films. 1999;346(1-2):269–274.
  15. Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA. Electron Transport Materials for Organic Light-Emitting Diodes. Chemistry of Materials. 2004;16(23):4556–4573. doi: 10.1021/cm049473l
  16. Juarez-Perez E. Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters. 2014;5(13):2390–2394. doi: 10.1021/jz5011169
  17. Wang C, Li J, Cai S, Ning Z, Zhao, Zhang Q, et al. 2012.
  18. Westermark, Henningsson A, Rensmo H, Soodergren S, Siegbah H, Hagfeldt. Electronic Density of States at a Nanostructured TiO2/Ru-dye/Electrolyte) Interface by Means of Photoelectron Spectroscopy. Chemical Physics. 2002;285(1):157–165. doi: 10.1016/s0301-0104(02)00699
  19. Ravishankar S, Gharibzadeh S, Roldán-Carmona C, Grancini G, Lee Y, Ralaiarisoa M, et al. Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule. 2018;2(4):788–798. doi: 10.1016/j.joule.2018.02.013

Copyright

 © 2020 Al-Dmour. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.