• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 43, Pages: 4417-4433

Original Article

An accurate and practical analysis for Neogene-marls in Central regions of Iran

Received Date:22 August 2020, Accepted Date:07 November 2020, Published Date:08 December 2020

Abstract

Objectives: To study the erosion and erosion forms of soils resulting from marls and their relationship with soil losses in Qom and Tehran regions. Also to study about sediment production, identification and classification of various types of the erosion (sheet, groove, millennial or badland, ditch, etc.) on the marls. Methods: The study was conducted in two areas south of Varamin and south of Hassanabad in Iran; in order to compare different marl units in terms of sedimentation and erosion, first the appropriate marls units were determined for testing and then confirmed by the desert visit. Finally, 20 stations were identified for testing which are mentioned in this paper; As well, the dimensions of the surface of the device are 20 cm * 20 cm, by dividing the volume of precipitation by the surface, the intensity of precipitation can be calculated. In addition, the authors consider the time of the first excavated soil and the generator of runoff as the erosion threshold. Findings: In the previous works, did not mentioned to the properties of the mentioned regions in Iran (special parts of Qom and Tehran regions); Actually, there are a special semiarid type among Iran’s regions; so, this study is a new research in this field about Neogene-marls in central regions of Iran. As well as, maps produced with the most robust models in the paper can be a useful tool for sustainable management, watershed conservation, and the reduction of soil and water loss for the semi-arid other regions of Iran too. Novelty: This study determined the effective rainfall intensity of the unpublished research about Tehran and Qom regions, first the statistics with the current 30-year return period were examined and the 30-minute rainfall intensity of the region was 19 mm.

Keywords: Climatic effects; sediment; physical properties; SPSS; geology analysis

References

  1. Mosavi A, Sajedi-Hosseini F, Choubin B, Taromideh F, Rahi G, Dineva AA. Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models. Water . 2020;12:1995. Available from: https://doi.org/10.3390/w12071995
  2. Arabkhedri M, Mahmoodabadi M, Taghizadeh S, Zoratipour A. Causes of Severe Erosion in a Clayey Soil under Rainfall and Inflow Simulation. ECOPERSIA. 2018;6(4):225–233. Available from: http://ecopersia.modares.ac.ir/article-24-19178-en.html
  3. Zabihi M, Mirchooli F, Motevalli A, Darvishan AK, Pourghasemi HR, Zakeri MA, et al. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. CATENA. 2018;161:1–13. Available from: https://dx.doi.org/10.1016/j.catena.2017.10.010
  4. Sadeghi SH, Kiani-Harchegani M, Hazbavi Z, Sadeghi P, Angulo-Jaramillo R, Lassabatere L, et al. Field measurement of effects of individual and combined application of biochar and polyacrylamide on erosion variables in loess and marl soils. Science of The Total Environment. 2020;728:138866. Available from: https://dx.doi.org/10.1016/j.scitotenv.2020.138866
  5. Arabameri A, Blaschke T, Pradhan B, Pourghasemi HR, Tiefenbacher JP, Bui DT. Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study. Sensors. 2020;20(2). Available from: https://dx.doi.org/10.3390/s20020335
  6. Vaezi AR, Abbasi M, Bussi G, Keesstra S. Modeling Sediment Yield in Semi‐Arid Pasture Micro‐Catchments, NW Iran. Land Degradation & Development. 2017;28:1274–1286. Available from: https://dx.doi.org/10.1002/ldr.2526
  7. Sedimentology of Sangard Dam in Sabzevar Dam. Quarterly Journal of Earth Sciences. 2002;45(46):36–47.
  8. Zolitschka B, Francus P, Ojala AEK, Schimmelmann A. Varves in lake sediments – A review. Quaternary Science Reviews. 2015;117:1–41. Available from: https://dx.doi.org/10.1016/j.quascirev.2015.03.019
  9. Feng WJ, Zhang CM, Yin TJ, Yin YS, Liu JL, Zhu R, et al. Sedimentary characteristics and internal architecture of a river-dominated delta controlled by autogenic process: implications from a flume tank experiment. Petroleum Science. 2019;16(6):1237–1254. Available from: https://dx.doi.org/10.1007/s12182-019-00389-x
  10. Bane A, Carreker AJR, Abruna F, Dooley AE. Erodibility of selected tropical soils. 1971.
  11. Benito G, Sánchez-Moya Y, Sopeña A. Sedimentology of high-stage flood deposits of the Tagus River, Central Spain. Sedimentary Geology. 2003;157(1-2):107–132. Available from: https://dx.doi.org/10.1016/s0037-0738(02)00196-3
  12. Collins AL, Walling DE, Sichingabula HM, Leeks GL. Suspended sediment source fingerprinting in a small tropical catchment and some management implications. Applied Geography. 2001;21(4):387–412. Available from: https://dx.doi.org/10.1016/s0143-6228(01)00013-3
  13. Dudley JR, Reid I, Rice SP. Particle movement in a steep-pool stream. In: Sixth International conference on Geomorphology. Zaragoza. p. 88.
  14. Fernandeze C, Avega J. Runoff and soil erosion after rainfall simulations in burned soils. J. Forest Ecology and Mmanagement. 2006;p. 375–377.
  15. Niemann JD, Bras RL, Veneziano D, Rinaldo A. Impacts of surface elevation on the growth and scaling properties of simulated river networks. Geomorphology. 2001;40(1-2):37–55. Available from: https://dx.doi.org/10.1016/s0169-555x(01)00036-8

Copyright

© 2020 Bahrouji & Peyrowan.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.