• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 45, Pages: 2441-2450

Original Article

An Expert System for Breast Cancer Prediction (ESBCP) using Decision Tree

Received Date:05 April 2022, Accepted Date:17 October 2022, Published Date:02 December 2022


Objectives: Breast cancer is one of the major concerns in present day scenario. Detecting breast cancer at early stage increases the chances of survival. The objective of this research is to propose suitable feature selection method to improve the efficiency of breast cancer prediction at early stages to increase the survival rate. Methods: In this work, an expert intelligent technique has been proposed named “Expert System for Breast Cancer Prediction (ESBCP)” to detect breast cancer. To validate the results, the proposed system determines accuracy, precision, F-measure, and recall. The proposed model introduced a feature selection technique named - Undiluted Feature Set (UFS) to select the most relevant and promising features. The experimental work was carried out using Python 2.8 version in a Windows environment, taking a dataset on breast cancer from the UCI machine learning repository. There were 699 occurrences in the dataset with nine attributes and two classes. The proposed work utilized a decision tree and a new feature selection technique based on a heuristic search and the Stochastic Hill method. The experimental results were evaluated using the 10-fold Cross-Validation (CV). Findings: The experimental findings showed that the suggested model - ESBCP can accurately detect breast cancer at an early stage. As per the result, with simple decision tree the accuracy recorded 93.42 percent whereas ESBCP obtained 94.01 percent. It may seem that the improvement of 0.59 percent is very small, but for a large population even this mere change can have a greater impact. Novelty: The suggested model ESBCP and the feature selection technique - UFS have a lot of potential in the fields of medical research and bioinformatics in terms of classification capability and predictive power. Keywords: Expert System; Decision Tree; Undiluted Feature Set; Breast Cancer; Feature Selection


  1. Das AK, Biswas SK, Mandal A. Transparent Decision Support System for Breast Cancer (TDSSBC) to Determine the Risk Factor. Lecture Notes in Electrical Engineering. 2021;p. 265–274. Available from: https://doi.org/10.1007/978-981-16-5078-9_23
  2. Das AK, Biswas SK, Bhattacharya A, Alam E. Introduction to Breast Cancer and Awareness. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 2021;1:227–232. Available from: https://doi:10.1109/ICACCS51430.2021.9441686
  3. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: A population‐based cancer registry data analysis from 2000 to 2020. Cancer Communications. 2021;41(11):1183–1194. Available from: https://doi.org/10.1002/cac2.12207
  4. Rajaguru H, R SCS. Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer. Asian Pacific Journal of Cancer Prevention. 2019;20(12):3777–3781. Available from: https://doi:10.31557/APJCP.2019.20.12.3777
  5. Ghani MU, Alam TM, Jaskani FH. Comparison of Classification Models for Early Prediction of Breast Cancer. International Conference on Innovative Computing (ICIC). 2019;2019:1–6. Available from: https://doi:10.1109/ICIC48496.2019.8966691
  6. Tian JXX, Zhang J. Breast cancer diagnosis using feature extraction and boosted C5.0 decision tree algorithm with penalty factor. Mathematical Biosciences and Engineering. 2022;19(3):2193–2205. Available from: https://doi:10.3934/mbe.2022102
  7. Khan F, Khan MA, Abbas S, Athar A, Siddiqui SY, Khan AH, et al. Cloud-Based Breast Cancer Prediction Empowered with Soft Computing Approaches. Journal of Healthcare Engineering. 2020;2020:1–16. Available from: https://doi.org/10.1155/2020/8017496
  8. Tabrizchi H, Tabrizchi M, Tabrizchi H. Breast cancer diagnosis using a multi-verse optimizer-based gradient boosting decision tree. SN Applied Sciences. 2020;2(4):1–9. Available from: https://doi.org/10.1007/s42452-020-2575-9
  9. Assegie TA, Tulasi RL, Kumar NK. Breast cancer prediction model with decision tree and adaptive boosting. IAES International Journal of Artificial Intelligence (IJ-AI). 2021;10(1):184. Available from: https://doi:10.11591/ijai.v10.i1.pp184-190
  10. Mangukiya M, Vaghani A, Savani M. Breast Cancer Detection with Machine Learning. International Journal for Research in Applied Science and Engineering Technology. 2022;10(2):141–145. Available from: https://doi.org/10.22214/ijraset.2022.40204.
  11. Khan M, Islam M, Sarkar S, Ayaz S, Ananda FI, Tazin MK, et al. Machine Learning Based Comparative Analysis for Breast Cancer Prediction. Journal of Healthcare Engineering. 2022;2022:1–15. Available from: https://doi.org/10.1155/2022/4365855
  12. Gayakwad G. Breast Cancer Detection Using Machine Learning Classifier. International Journal of Multidisciplinary and Current Educational Research (IJMCER). 2021;3(4).
  13. Assegie TA, J. SS. A Support Vector Machine and Decision Tree Based Breast Cancer Prediction. International Journal of Engineering and Advanced Technology. 2020;9(3):2972–2976. Available from: https://doi:10.35940/ijeat.A1752.029320
  14. Botcha VM, Kolla BP. Predicting Breast Cancer using Modern Data Science Methodology. International Journal of Innovative Technology and Exploring Engineering. 2019;8(10):4444–4446. Available from: https://doi:10.35940/ijitee.J1077.0881019
  15. Laghmati S, Tmiri A, Cherradi B. Machine Learning based System for Prediction of Breast Cancer Severity. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). 2019;2019. Available from: https://doi:10.1109/WINCOM47513.2019.8942575
  16. Naji MA, Filali SE, Aarika K, Benlahmar EH, Abdelouhahid RA, Debauche OA. Machine Learning Algorithms For Breast Cancer Prediction And Diagnosis. Procedia Computer Science. 2021;191:487–492. Available from: https://doi.org/10.1016/j.procs.2021.07.062
  17. Sivapriya J, Kumar A, Sai SS, Sriram S. Breast cancer prediction using machine learning. International Journal of Recent Technology and Engineering (IJRTE). 2019;8(4):4879–4881. Available from: https://doi:10.35940/ijrte.D8292.118419
  18. Hazra R, Banerjee M, Badia L. Machine Learning for Breast Cancer Classification With ANN and Decision Tree. 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). 2020. Available from: https://doi:10.1109/IEMCON51383.2020.9284936
  19. Abdulrahman BF, Hawezi RS, Sm MR, Kareem SW, Ahmed ZR. Comparative Evaluation of Machine Learning Algorithms in Breast Cancer. Qalaai Zanist Journal. 2022;7(1):878–902. Available from: https://doi.org/10.25212/lfu.qzj.7.1.34
  20. Boukerche A, Zheng L, Alfandi O. 2020. Available from: https://doi.org/10.1145/3381028


© 2022 Das et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.