• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 670
• PDF 231

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 31, Pages: 3176-3187

Review Article

## An extension of grey relational analysis for interval-valued fuzzy soft sets

Received Date:02 April 2020, Accepted Date:04 July 2020, Published Date:27 August 2020

## Abstract

Background: Neither any analytical (nor numerical) nor any statistical approach is often helpful in a situation where every person has his/her own choice. To cope with such situations usually we have to use fuzzy sets in combination with soft sets, which consist of predicates and approximate value sets as their images. Material: Choice values and comparison table techniques are two common decision-making techniques, which often don’t result in same preference order or optimal choice. To overcome this kind of situation in decision-making problems, grey relational analysis method is used to get on a final decision. Method: Here we have used grey relational analysis method involving “interval-valued fuzzy soft sets” and “AND operation” to deal with such kind of problems. Our approach is also a correction to the method used by Kong et al.(1), where the Uni-Int technique is incorrectly used in case of soft sets instead of fuzzy soft sets. Result: The proposed method is effective in seeking an optimal choice in the case when common decision-making techniques fail to get on a final decision. Conclusion: By using grey relational analysis, a suitable method to choose one object from different choices has been proposed. It overcomes the grayness in decision-making problems for getting on a final decision when one gets too many options and finds it difficult to choose an optimal choice.

Keywords: Fuzzy soft set; Grey relational analysis; Un-Int; interval-valued fuzzy soft set

## References

1. Kong Z, Wang L, Wu Z. Application of Fuzzy soft set in decision making problems based on grey relational Analysis. Journal of Computational and Mathematics. 2011;236:1521–1530. Available from: https:doi.org/10.1016/j.cam.2011.09.01.6
2. Weaver W. Classical Papers-Science and Complexity. 2004;6(3). Available from: https://doi.org/10.2307/2272014
3. Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338–353. Available from: https://dx.doi.org/10.1016/s0019-9958(65)90241-x
4. Molodtsov D. Soft set theory—First results. Computers & Mathematics with Applications. 1999;37(4-5):19–31. Available from: https://dx.doi.org/10.1016/s0898-1221(99)00056-5
5. Molodtsov D. The theory of soft sets. Moscow. URSS publishers. 2004.
6. Maji PK, Biswas R, Roy AR. Fuzzy soft sets. An application of soft sets in a decision making problem. Computer and Mathematics with applications. 2002;44(8-9):216. Available from: https://doi.org/10.1016/S0898-1221(02)216-X
7. Roy AR, Maji PK. A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics. 2007;203(2):412–418. Available from: https://dx.doi.org/10.1016/j.cam.2006.04.008
8. Maji PK, Biswas R, Roy AR. Soft set theory. Computers & Mathematics with Applications. 2003;45(4-5):555–562. Available from: https://dx.doi.org/10.1016/s0898-1221(03)00016-6
9. Cagman N, Engionglu S. Soft set theory and Uni-Int decision making. European journal of Operational Research. 2010;207:848–855. Available from: https://doi.org/10.1016/j.ejor2010.05.004
10. Jiang Y, Tang Y, Chen Q. An adjustable approach to intuitionistic fuzzy soft sets based decision making. Journal of Computational and Applied Mathematics Model. 2011;35:824–836. Available from: https://doi.org/10.1016/j.apm.2010.07.038
11. Jiang Y, Tang Y, Chen Q, Liu H, Tang J. Interval-valued intuitionistic fuzzy soft sets and their properties. Computers and Mathematics with applications. 2010;60(3):906–916. Available from: https://doi.org/10.1016/j.camwa.2010.05.036
12. Feng F, Jun YB, Liu X, Li L. An adjustable approach to fuzzy soft sets based decision making. Journal of Computational and Applied Mathematics. 2010;234(1). Available from: https://doi.org/10.1016/j.cam.2009.11.055
13. Feng F, Li Y, Leoreanu-Fotea V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Computers & Mathematics with Applications. 2010;60(6):1756–1767. Available from: https://dx.doi.org/10.1016/j.camwa.2010.07.006
14. Yang X, Lin TY, Yang J, Li Y, Yu D. Combination of interval-valued fuzzy soft sets and soft set. Computers and Mathematics with applications. 2009;58(3):521–527. Available from: https://doi.org/10.1016/j.cam.2009.04.019
15. Majumdar P, Samanta SK. Generalised fuzzy soft sets. Computers & Mathematics with Applications. 2010;59(4):1425–1432. Available from: https://dx.doi.org/10.1016/j.camwa.2009.12.006
16. Zhan J, YB. Jun: Soft BL-algebras based on fuzzy soft sets. Computers and Mathe- matics with Applications. 2010;59(6):2037–2046. Available from: https://doi.org/10.1016/j.camwa.2009.12.008
17. Xu W, Ma J, Wang S, Hao G. Vague soft sets and their properties. Computers & Mathematics with Applications. 2010;59(2):787–794. Available from: https://dx.doi.org/10.1016/j.camwa.2009.10.015
18. Ali MI, Feng F, Liu X, Min WK, Shabir M. On some new operations in soft set theory. Computers & Mathematics with Applications. 2009;57(9):1547–1553. Available from: https://dx.doi.org/10.1016/j.camwa.2008.11.009
19. Kong Z, Gao L, Wang L, Li S. The normal parameters reduction of soft sets and its algorithm. Computers and Mathematics with Applications. 2008;56(12):3029–3037. Available from: https://doi.org/10.1016/j.camwa.2008.07.013
20. Kang H, Lee D. Changes of Soil Enzyme Activities By Simulated Acid and Nitrogen Deposition. Chemistry and Ecology. 1998;14:123–131. Available from: https://dx.doi.org/10.1080/02757549808035547