• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 17, Pages: 1284-1294

Original Article

An Improved Machine Learning Algorithm for Silver Nanoparticle Images: A Study on Computational Nano-Materials

Received Date:28 January 2023, Accepted Date:30 March 2023, Published Date:02 May 2023


Objectives: To study the determination and classification of Scanning Electron Microscopy (SEM) images of silver nanoparticles using digital image processing techniques and classifying the images using various machine learning classifiers namely; SVM, K-NN, and PNN classifiers. Methods: Segmentation techniques namely; Fuzzy C-Means (FCM) and K-Means were applied to extract geometric features from SEM images of silver nanoparticles. The size of nanoparticles was determined and classified based on various nano applications. The categorization of silver nanoparticles was done based on the geometrical feature value, i.e. area, and was further classified into three categories such as; 0-100 nm, 101-200 nm, and 201-500 nm using both the segmentation techniques. Further, the proposed method extracts texture features such as; kurtosis, skewness, and entropy and used SVM, K-NN, and PNN classifiers to classify the silver nanoparticle SEM images. The proposed results are analyzed and interpreted by chemical experts to observe the effectiveness of the proposed method. Findings: To improve the classification accuracy of Silver nanoparticle images, textural features such as; kurtosis, skewness, and entropy were extracted and SVM, K-NN, and PNN classifiers are used to classify the silver nanoparticle images. The performance of the proposed algorithm is evaluated based on performance evaluation measures such as; specificity, sensitivity, true predictive value, and false positive value. Higher TPV, specificity, and sensitivity values show promising results. It is observed that the SVM classifier has 75.00%, K-NN has 62.50%, and PNN yielded an accuracy of 93.00%. Novelty: Traditional synthesis and characterization techniques are inefficient and time-consuming and require more space and infrastructure to analyze the size of the nanoparticle. The current study circumvents these limitations. The silver nanoparticle images used in the present study are synthesized using rudanti fruit seeds, and the process is named as green synthesis process or biological method. This method is widely used because it does not use anytoxic chemicals, is inexpensive, andis environmentally friendly. In the previous work, only geometrical features namely; Area (pore size), and range-wise pore size were calculated depending on the application-oriented. The present study employs two phases; the training phase (knowledge base) and the testing phase(classification). The training phase includes segmentation, feature extraction, and categorization depending on the applications. The testing phase extracts the textural features such as; kurtosis, skewness, and entropy, and classifies the silver nanoparticles by using SVM, K-NN, and PNN classifiers.

Keywords: Silver nanoparticles; Image segmentation; FCM; KMeans; SVM; KNN; PNN


  1. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An Introduction to Nanotechnology. Interface Science and Technology. 2019;28:1–27. Available from: https://doi.org/10.1016/B978-0-12-813586-0.00001-8
  2. Kshitij RB, Singh V, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv. 2021;11:24722–24746. Available from: https://doi.org/10.1039/D1RA04273D
  3. Subbotina J, Lobaskin V. Multiscale Modeling of Bio-Nano Interactions of Zero-Valent Silver Nanoparticles. The Journal of Physical Chemistry B. 2022;126(6):1301–1314. Available from: https://doi.org/10.1021/acs.jpcb.1c09525
  4. Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications. 2019;55(49):6964–6996. Available from: https://doi.org/10.1039/C9CC01741K
  5. Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni HV, Chong KF, et al. The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials. 2021;11(9):2318. Available from: https://doi.org/10.3390/nano11092318
  6. Crisan CM, Mocan T, Manolea M, Lasca LI, Tăbăran FA, Mocan L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Applied Sciences. 2021;11(3):1120. Available from: https://doi.org/10.3390/app11031120
  7. Lu J, Wang Y, Jin M, Yuan ZM, Bond P, Guo J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Research. 2020;169(169):115229. Available from: https://doi.org/10.1016/j.watres.2019.115229
  8. Kaur A, Preet S, Kumar V, Kumar R, Kumar R. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces. 2019;176(176):62–69. Available from: https://doi.org/10.1016/j.colsurfb.2018.12.043
  9. Dick R, Sunday M, Tjalf EDB, Riet V, Gestel CAMV, Brink NWVD. Surface coating and particle size are main factors explaining the transcriptome-wide responses of the earthworm Lumbricus rubellus to silver nanoparticles. Environmental Science: Nano. 2020;7(4):1179–1193. Available from: http://dx.doi.org/10.1039/C9EN01144G
  10. Bannigidad P, Potraj N, Prabhuodeyara M, Gurubasavaraj, Lakkappa B. Iron Oxide Nanoparticle Image Analysis using Machine Learning Algorithms. Proceeding of Seventh International Conference on Emerging Research in Computing, Information, Communication, and Applications, ERCICA 2022. 2022;928:233–240. Available from: https://doi.org/10.1007/978-981-19-5482-5
  11. Mekki-Berrada F, Ren Z, Huang T, Wong WK, Zheng F, Xie J, et al. Two-step machine learning enables optimized nanoparticle synthesis. NPJ Computational Materials. 2021;7(1). Available from: https://doi.org/10.1038/s41524-021-00520-w
  12. Taha AATB, Barzinjy F, Seaeed H, Hussain T, Nurtayeva. Nanotechnology and Computer Science: Trends and advances. Memories - Materials, Devices, Circuits and Systems. 2022;2. Available from: https://doi.org/10.1016/j.memori.2022.100011
  13. Yao L, Ou Z, Luo B, Xu C, Chen Q. Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. ACS Central Science. 2020;6(8):1421–1430. Available from: https://doi.org/10.1021/acscentsci.0c00430
  14. Thamyris E, Nobrega D, Terra I, Oliveira ADGD, Viana L, Da SH, et al. A low-cost sensor based on silver nanoparticles for determining chemical oxygen demand in wastewater via image processing analysis. Analytical Methods. 2019;11(43):5577–5583. Available from: https://doi.org/10.1039/C9AY01755K
  15. Alruwaili M, Siddiqi MH, Javed MA. A robust clustering algorithm using spatial fuzzy C-means for brain MR images. Egyptian Informatics Journal. 2020;21(1):51–66. Available from: https://doi.org/10.1016/j.eij.2019.10.005
  16. Bannigidad P, Potraj N, Prabhuodeyara M, Gurubasavaraj, Lakkappa B, Anigol. Boron Nanoparticle Image Analysis using Machine Learning Algorithms. Journal of Advanced Applied Scientific Research. 2022;4(1):28–37. Available from: https://doi.org/10.46947/joaasr412022223


© 2023 Bannigidad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)  


Subscribe now for latest articles and news.