• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 23, Pages: 2390-2400

Original Article

An Integrated Framework for Early Differential Diagnosis of COVID-19 using Improved Fuzzy Cognitive Map Approaches

Received Date:10 April 2024, Accepted Date:17 May 2024, Published Date:03 June 2024

Abstract

Background/Objectives: The COVID-19 pandemic has created an urgent need for rapid and accurate diagnosis to facilitate timely treatment and control spread. However, the initial symptoms can be non-specific, making early differential diagnosis challenging. Methods: This study proposes an integrated framework for COVID-19 diagnosis using improved Fuzzy Cognitive Map (FCM) approach for fast, intelligent screening of COVID-19 cases versus other respiratory conditions based on risk factors and clinical presentation. The integrated framework is designed based on combining fuzzy cognitive maps with different classifiers separately such as Random Forest (RF) classifier, Gradient Boosting (GB) classifier and Weighted Decision Tree (WDT) approach to model interrelationships between indicative symptoms and risk factors in COVID-19. The model is evaluated on a real time COVID-19 dataset of 600 patient details (i.e., 520 non-covid and 80 Covid). Due to the unbalanced nature of class labels, this work is evaluated based on balanced accuracy and Matthews’s correlation coefficient to identify the appropriate model. Findings: Among the different combination of classifiers FCM-RF attains 95.91% which outperforms 15.14%, 5.05% and 7.69% higher than normal FCM, FCM-GB and FCM-WDT. Novelty: The interpretability of the fuzzy map supplemented by the high predictive performance of random forest provides an effective decision support system for frontline healthcare workers to make quick, reliable screening decisions and ensure optimal care pathways. The integrated approach demonstrates the potential of computational intelligence in addressing critical diagnosis challenges within complex, urgent medical scenarios.

Keywords: COVID-19, Ensemble Approach, Improved fuzzy cognitive maps, Balanced accuracy, Clinical dataset

References

  1. Battaglini D, Lopes-Pacheco M, Castro-Faria-Neto HC, Pelosi P, Rocco PRM. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Frontiers in Immunology. 2022;13:1–11. Available from: https://dx.doi.org/10.3389/fimmu.2022.857573
  2. Chu VT, Schwartz NG, Donnelly MAP, Chuey MR, Soto R, Yousaf AR, et al. Comparison of Home Antigen Testing With RT-PCR and Viral Culture During the Course of SARS-CoV-2 Infection. JAMA Internal Medicine. 2022;182(7):701–709. Available from: https://dx.doi.org/10.1001/jamainternmed.2022.1827
  3. Pu R, Liu S, Ren X, Shi D, Ba Y, Huo Y, et al. The screening value of RT-LAMP and RT-PCR in the diagnosis of COVID-19: systematic review and meta-analysis. Journal of Virological Methods. 2022;300:1–9. Available from: https://dx.doi.org/10.1016/j.jviromet.2021.114392
  4. Rivera-Olivero IA, Henríquez-Trujillo AR, Kyriakidis NC, Ortiz-Prado E, Laglaguano JC, Vallejo-Janeta AP, et al. Diagnostic Performance of Seven Commercial COVID-19 Serology Tests Available in South America. Frontiers in Cellular and Infection Microbiology. 2022;12:1–6. Available from: https://dx.doi.org/10.3389/fcimb.2022.787987
  5. Samee NA, El-Kenawy ESM, Atteia G, Jamjoom MM, Ibrahim A, Abdelhamid AA, et al. Metaheuristic Optimization Through Deep Learning Classification of COVID-19 in Chest X-Ray Images. Computers, Materials & Continua. 2022;73(2):4193–4210. Available from: https://doi.org/10.32604/cmc.2022.031147
  6. Hu R, Gan J, Zhu X, Liu T, Shi X. Multi-task multi-modality SVM for early COVID-19 Diagnosis using chest CT data. Information Processing & Management. 2022;59(1):1–15. Available from: https://dx.doi.org/10.1016/j.ipm.2021.102782
  7. Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS Applied Bio Materials. 2022;5(5):2046–2068. Available from: https://dx.doi.org/10.1021/acsabm.1c01320
  8. Mahdi AY, Yuhaniz SS. Automatic Diagnosis of COVID-19 Patients from Unstructured Data Based on a Novel Weighting Scheme. Computers, Materials & Continua. 2023;74(1):1375–1392. Available from: https://dx.doi.org/10.32604/cmc.2023.032671
  9. Hammad MS, Ghoneim VF, Mabrouk MS, Al-atabany WI. A hybrid deep learning approach for COVID-19 detection based on genomic image processing techniques. Scientific Reports. 2023;13(1):1–21. Available from: https://dx.doi.org/10.1038/s41598-023-30941-0
  10. Sadeghi A, Sadeghi M, Sharifpour A, Fakhar M, Zakariaei Z, Sadeghi M, et al. Potential diagnostic application of a novel deep learning- based approach for COVID-19. Scientific Reports. 2024;14(1):1–19. Available from: https://dx.doi.org/10.1038/s41598-023-50742-9
  11. Yenurkar G, Mal S. Future forecasting prediction of Covid-19 using hybrid deep learning algorithm. Multimedia Tools and Applications. 2023;82(15):22497–22523. Available from: https://dx.doi.org/10.1007/s11042-022-14219-7
  12. Schwab P, Schütte AD, Dietz B, Bauer S. Clinical Predictive Models for COVID-19: Systematic Study. Journal of Medical Internet Research. 2020;22(10):1–14. Available from: https://doi.org/10.2196/21439
  13. Sahin ME. Deep learning-based approach for detecting COVID-19 in chest X-rays. Biomedical Signal Processing and Control. 2022;78:1–10. Available from: https://doi.org/10.1016/j.bspc.2022.103977
  14. Ramón A, Torres AM, Milara J, Cascón J, Blasco P, Mateo J. eXtreme Gradient Boosting-based method to classify patients with COVID-19. Journal of Investigative Medicine. 2022;70(7):1472–1480. Available from: https://dx.doi.org/10.1136/jim-2021-002278
  15. Rostami M, Oussalah M. A novel explainable COVID-19 diagnosis method by integration of feature selection with random forest. Informatics in Medicine Unlocked. 2022;30:1–15. Available from: https://dx.doi.org/10.1016/j.imu.2022.100941
  16. Chumachenko D, Meniailov I, Bazilevych K, Chumachenko T, Yakovlev S. Investigation of Statistical Machine Learning Models for COVID-19 Epidemic Process Simulation: Random Forest, K-Nearest Neighbors, Gradient Boosting. Computation. 2022;10(6):1–22. Available from: https://dx.doi.org/10.3390/computation10060086
  17. Heidari A, Navimipour NJ, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Computing and Applications. 2022;34(18):15313–15348. Available from: https://dx.doi.org/10.1007/s00521-022-07424-w
  18. Groumpos PP. Modelling COVID-19 using Fuzzy Cognitive Maps (FCM) EAI Endorsed Transactions on Bioengineering and Bioinformatics. 2021;1(2):1–13. Available from: https://dx.doi.org/10.4108/eai.24-2-2021.168728
  19. Wu K, Liu J. Learning large-scale fuzzy cognitive maps under limited resources. Engineering Applications of Artificial Intelligence. 2022;116. Available from: https://dx.doi.org/10.1016/j.engappai.2022.105376
  20. Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN Computer Science. 2022;3(4):1–35. Available from: https://dx.doi.org/10.1007/s42979-022-01184-z
  21. Saqlain SM, Sher M, Shah FA, Khan I, Ashraf MU, Awais M, et al. Fisher score and Matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines. Knowledge and Information Systems. 2019;58(1):139–167. Available from: https://dx.doi.org/10.1007/s10115-018-1185-y

Copyright

© 2024 Akilashri & Nithya. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.