• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 36, Pages: 2832-2841

Original Article

An Investigation of Response of the Tropical Cyclone Ockhi in the Equatorial Ionosphere over the Indian region

Received Date:07 August 2021, Accepted Date:23 September 2021, Published Date:03 November 2021

Abstract

Background/Objectives: The ionospheric response to the tropical cyclone (TC) OCKHI of December 2017 in the equatorial region is presented in the study. Methods/Statistical analysis: The ionospheric response includes a change in Total Electron Content (TEC) is utilized using the stations of Tirunelveli and Bangalore. The critical frequency (foF2) from Ionosonde over Tirunelveli station also considered to study the TC effect in the F2 region of ionosphere. Findings: It has been observed that the significant changes in the equatorial ionosphere exhibits during the tropical cyclone (TC) OCKHI. They are: Ionospheric parameter of vertical total electron content (VTEC) varies during the TC (i.e. from Day 332 to Day 336 of the year 2017) as the cyclone center is near to the Tirunelveli (8.7º N, 77.8º E) and the same follows for the IGS station of Bangalore. In addition, ionosonde measurements of foF2 perceived for the local night time support the TEC decrease noted over Tirunelveli when the cyclone attains its peak on 01 December 2017. Novelty/Applications: Using the ionosonde data over the equatorial ionosphere, such behavior may not be reported earlier to the best of my knowledge. The gravity wave induced by the TC Ockhi redistributes the element of the ionosphere due to strong convection and lightning activity.

Keywords: TEC; Cyclone; foF2; OCKHI; and gravity waves

References

  1. Fritts DC, Alexander MJ. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics. 2003;41(1). Available from: https://dx.doi.org/10.1029/2001rg000106
  2. Polyakova AS, Perevalova NP. Investigation into impact of tropical cyclones on the ionosphere using GPS sounding and NCEP/NCAR Reanalysis data. Advances in Space Research. 2011;48(7):1196–1210. Available from: https://dx.doi.org/10.1016/j.asr.2011.06.014
  3. Kazimirovsky ES. Coupling from below as a source of ionospheric variability: a review. Annals of Geophysics. 2002;45(1):1–30.
  4. Yiğit E, Knížová PK, Georgieva K, Ward W. A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity. Journal of Atmospheric and Solar-Terrestrial Physics. 2016;141:1–12. Available from: https://dx.doi.org/10.1016/j.jastp.2016.02.011
  5. Pulinets SA, Boyarchuk KA, Hegai VV, Kim VP, Lomonosov AM. Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Advances in Space Research. 2000;26(8):1209–1218. Available from: https://dx.doi.org/10.1016/s0273-1177(99)01223-5
  6. Sorokin VM, Yaschenko AK, Chmyrev VM, Hayakawa M. DC electric field formation in the mid-latitude ionosphere over typhoon and earthquake regions. Physics and Chemistry of the Earth, Parts A/B/C. 2006;31(4-9):454–461. Available from: https://dx.doi.org/10.1016/j.pce.2005.09.001
  7. Immel TJ, Mende SB, Hagan ME, Kintner PM, England SL. Evidence of Tropospheric Effects on the Ionosphere. Eos, Transactions American Geophysical Union. 2009;90(9):69. Available from: https://dx.doi.org/10.1029/2009eo090001
  8. Vadas SL, Fritts DC. Thermospheric responses to gravity waves arising from mesoscale convective complexes. Journal of Atmospheric and Solar-Terrestrial Physics. 2004;66(6-9):781–804. Available from: https://dx.doi.org/10.1016/j.jastp.2004.01.025
  9. Borchevkina O, Karpov I, Karpov M. Meteorological Storm Influence on the Ionosphere Parameters. Atmosphere. 2020;11(9):1017. Available from: https://dx.doi.org/10.3390/atmos11091017
  10. Guha A, Paul B, Chakraborty M, De BK. Tropical cyclone effects on the equatorial ionosphere: First result from the Indian sector. Journal of Geophysical Research: Space Physics. 2016;121(6):5764–5777. Available from: https://dx.doi.org/10.1002/2016ja022363
  11. Bhagavathiammal GJ, Lal M, Emperumal K. Observational evidence of equatorial ionospheric response to severe cyclonic storms ‘AILA’ and ‘WARD’ observed over the North Indian Ocean. Journal of Atmospheric and Solar-Terrestrial Physics. 2020;211:105462. Available from: https://dx.doi.org/10.1016/j.jastp.2020.105462
  12. Liu L, Wan W, Lee CC, Ning B, Liu JY. The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120°E. Earth, Planets and Space. 2004;56(6):607–612. Available from: https://dx.doi.org/10.1186/bf03352521
  13. Singh AK, Siingh D, Singh RP, Mishra S. Electrodynamical Coupling of Earth's Atmosphere and Ionosphere: An Overview. International Journal of Geophysics. 2011;2011:1–13. Available from: https://dx.doi.org/10.1155/2011/971302
  14. Polyakova AS, Perevalova NP. Comparative analysis of TEC disturbances over tropical cyclone zones in the North–West Pacific Ocean. Advances in Space Research. 2013;52(8):1416–1426. Available from: https://dx.doi.org/10.1016/j.asr.2013.07.029
  15. Rozhnoi A, Solovieva M, Levin B, Hayakawa M, Fedun V. Meteorological effects in the lower ionosphere as based on VLF/LF signal observations. Natural Hazards and Earth System Sciences. 2014;14. doi: 10.5194/nhess-14-2671-2014
  16. Mao T, Wang J, Yang G, Yu T, Ping J, Suo Y. Effects of typhoon Matsa on ionospheric TEC. Chinese Science Bulletin. 2010;55(8):712–717. Available from: https://dx.doi.org/10.1007/s11434-009-0472-0
  17. Sripathi S, Singh R, Banola S, Sreekumar S, Emperumal K, Selvaraj C. Characteristics of the equatorial plasma drifts as obtained by using Canadian Doppler ionosonde over southern tip of India. Journal of Geophysical Research: Space Physics. 2016;121(8):8103–8120. Available from: https://dx.doi.org/10.1002/2016ja023088
  18. Naaman S, Alperovich LS, Wdowinski S, Hayakawa M, Calais E. Comparison of simultaneous variations of the ionospheric total electron content and geomagnetic field associated with strong earthquakes. Natural Hazards and Earth System Sciences. 2001;1(1/2):53–59. Available from: https://dx.doi.org/10.5194/nhess-1-53-2001
  19. Chen SS, Knaff JA, Marks FD. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Monthly Weather Review. 2006;134(11):3190–3208. Available from: https://dx.doi.org/10.1175/mwr3245.1
  20. Knížová PK, Podolská K, Potužníková K, Kouba D, Mošna Z, Boška J, et al. Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere. Annales Geophysicae. 2020;38(1):73–93. Available from: https://dx.doi.org/10.5194/angeo-38-73-2020
  21. Xiao Z, Xiao Sg, Hao Yq, Zhang Dh. Morphological features of ionospheric response to typhoon. Journal of Geophysical Research: Space Physics. 2007;112(A4):213–220. Available from: https://dx.doi.org/10.1029/2006ja011671
  22. Zhao Y, Mao T, Wang JS, Chen Z. The 2D features of tropical cyclone Usagi’s effects on the ionospheric total electron content. Advances in Space Research. 2018;62(4):760–764. Available from: https://dx.doi.org/10.1016/j.asr.2018.05.022
  23. Parihar N, Radicella SM, Nava B, Migoya-Orue YO, Tiwari P, Singh R. An investigation of the ionospheric F region near the EIA crest in India using OI 777.4 and 630.0 nm nightglow observations. Annales Geophysicae. 2018;36(3):809–823. Available from: https://dx.doi.org/10.5194/angeo-36-809-2018
  24. Yimou L, Jingsong W, Zuo X, Yucheng S. A possible mechanism of typhoon effects on the ionospheric f2 layer. Chinese Journal of space science. 2006;26(2):92–97. Available from: https://doi.org/10.11728/ cjss2006.02.092
  25. Shao XM, Lay EH, Jacobson AR. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm. Nature Geoscience. 2013;6(1):29–33. Available from: https://dx.doi.org/10.1038/ngeo1668
  26. Dube A, Singh R, Maurya AK, Kumar S, Sunil PS, Singh AK. Ionospheric Perturbations Induced by a Very Severe Cyclonic Storm (VSCS): A Case Study of Phailin VSCS. Journal of Geophysical Research: Space Physics. 2020;125(1). Available from: https://dx.doi.org/10.1029/2019ja027197
  27. Ming FC, Chen Z, Roux F. Analysis of gravity-waves produced by intense tropical cyclones. Annales Geophysicae. 2010;28(2):531–547. Available from: https://dx.doi.org/10.5194/angeo-28-531-2010
  28. Karpov MI, Karpov IV, Borchevkina OP, Yakimova GA, Korenkova NA. Ionospheric Disturbances during Meteorological Storms. Geomagnetism and Aeronomy. 2020;60(5):611–618. Available from: https://dx.doi.org/10.1134/s0016793220050102
  29. Kazimirovsky ES. Coupling from below as a source of ionospheric variability: a review. Annals of Geophysics. 2002;45(1):1–30. doi: 10.4401/ag-3482
  30. Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, et al. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Science. 2015;2(7):301–319. Available from: https://dx.doi.org/10.1002/2014ea000089

Copyright

© 2021 Karthikeyan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.