• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 11, Pages: 495-504

Original Article

An Objective Classification Approach of Cacao Pods using Local Binary Pattern Features and Artificial Neural Network Architecture (ANN)

Received Date:27 October 2021, Accepted Date:16 February 2022, Published Date:25 March 2022


Objectives: Cacao is considered the “food of the gods” and is one of the leading crops of the tropical world. The differentiated use for both food and nonfood of cacao is the reason why it has been gaining recognition around the world. Despite this, cacao production is said to be declining for a variety of reasons. One of these is the possible contamination among the harvested pods due to the manual way of performing classification and segregation of cacao pods during the harvest period. Traditional approach or the manual way of classifying whether the pod is healthy or not is very subjective, which may give erroneous results, and mixing of healthy and unhealthy pods may lead to contamination once they are transported and stored. Hence, we develop a study to make an objective approach that performs cacao pods classification by discriminating healthy cacao pods from unhealthy ones using Artificial Neural Network (ANN). Methods: This study presents a Cacao Pod Classification System that will automatically classify cacao pods (i.e. healthy or not healthy) during the harvest period. We leverage imaging technology and machine learning techniques to create a classifier that performs binomial classification. Color Histogram (CH) and Local Binary Pattern (LBP) features were used as input to the Artificial Neural Network (ANN) classifier. Findings: Experiments reveal that the approach successfully extracts features from the captured images of cacao pods and provides efficient results in terms of the four performance measures (i.e. accuracy, precision, recall, and f1-score) giving an accuracy rate of 98.3% in particular, which is superior among other classifiers tested such as the Support Vector Machine (SVM) and Logistic Regression (LR). Novelty: Artificial Neural Network classifier was found to be superior from other classifiers tested in classifying healthy and unhealthy cacao pods along with color histogram and local binary pattern as features used in the study. Application: The pilot test of the application was performed in a 5-hectare privately owned cacao farm situated at Poblacion, Initao, Misamis Oriental, Philippines.

Keywords: Image Processing; artificial neural network; cacao pod; classification; feature extraction; segmentation


  1. Hernández-Hernández C, Fernández-Cabanás VM, Rodríguez-Gutiérrez G, Fernández-Prior Á, Morales-Sillero A. Rapid screening of unground cocoa beans based on their content of bioactive compounds by NIR spectroscopy. Food Control. 2022;131:108347. Available from: https://dx.doi.org/10.1016/j.foodcont.2021.108347
  2. Adhitya Y, Prakosa SW, Köppen M, Leu JS. Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application. Agronomy. 2020;10(11):1642. Available from: https://dx.doi.org/10.3390/agronomy10111642
  3. Quelal‐Vásconez MA, Lerma‐García MJ, Pérez‐Esteve É, Talens P, Barat JM. Roadmap of cocoa quality and authenticity control in the industry: A review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety. 2020;19(2):448–478. Available from: https://dx.doi.org/10.1111/1541-4337.12522
  4. Tan DS, Leong RN, Laguna AF, Ngo CA, Lao A, Amalin DM, et al. AuToDiDAC: Automated Tool for Disease Detection and Assessment for Cacao Black Pod Rot. Crop Protection. 2018;103:98–102. Available from: https://dx.doi.org/10.1016/j.cropro.2017.09.017
  5. Hinneh M, Semanhyia E, Walle DVd, Winne AD, Tzompa-Sosa DA, Scalone GLL, et al. Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International. 2018;111:607–620. Available from: https://dx.doi.org/10.1016/j.foodres.2018.05.064
  6. Santos FA, Palmeira ES, Jesus GJ. An image dataset of cut-test-classified cocoa beans. Data in Brief. 2019;24:103916. Available from: https://dx.doi.org/10.1016/j.dib.2019.103916
  7. Fernández-Niño M, Rodríguez-Cubillos MJ, Herrera-Rocha F, Anzola JM, Cepeda-Hernández ML, Mejía JLA, et al. Dissecting industrial fermentations of fine flavour cocoa through metagenomic analysis. Scientific Reports. 2021;11(1). Available from: https://dx.doi.org/10.1038/s41598-021-88048-3
  8. Sánchez K, Bacca J, Arévalo-Sánchez L, Arguello H, Castillo S. Classification of Cocoa Beans Based on their Level of Fermentation using Spectral Information. TecnoLógicas. 2021;24(50):e1654. Available from: https://dx.doi.org/10.22430/22565337.1654
  9. Adhitya Y, Prakosa SW, Köppen M, Leu JS. Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application. Agronomy. 2020;10(11):1642. Available from: https://dx.doi.org/10.3390/agronomy10111642
  10. Oliveira MM, Cerqueira BV, Barbon S, Barbin DF. Classification of fermented cocoa beans (cut test) using computer vision. Journal of Food Composition and Analysis. 2021;97:103771. Available from: https://dx.doi.org/10.1016/j.jfca.2020.103771
  11. Sharma R, Singh R. Improved Approaches Edge Direction Histogram and HSV Histogram, Color Auto Correlagram; Gabor Wavelet Transforms using CBIR. International Journal of Computer Applications. 2018;182(2):24–28. Available from: https://dx.doi.org/10.5120/ijca2018917464
  12. Sodjinou SG, Mohammadi V, Mahama ATS, Gouton P. A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images. Information Processing in Agriculture. 2021. Available from: https://dx.doi.org/10.1016/j.inpa.2021.08.003
  13. Dwairi MO. A modified symmetric local binary pattern for image features extraction. Telecommunication Computing Electronics and Control. 2020;18:1224. Available from: https://dx.doi.org/10.12928/telkomnika.v18i3.14256
  14. Sujay SN, Reddy HSM. Extended Local Binary Pattern Features based Face Recognition using Multilevel SVM Classifier. International Journal of Recent Technology and Engineering. 2019;8(3):4123–4128. Available from: https://www.ijrte.org/wp-content/uploads/papers/v8i3/C5481098319.pdf
  15. Kusuma IB, Kartika A, W TAB, Ramadhani KN, Sthevanie F. Image Spoofing Detection Using Local Binary Pattern and Local Binary Pattern Variance. International Journal on Information and Communication Technology (IJoICT). 2019;4(2):11. Available from: https://dx.doi.org/10.21108/ijoict.2018.42.134
  16. Gaikwad S, Shinde S. Leaf Disease Detection using Digital Image Processing with SVM Classifier. International Journal of Computer Sciences and Engineering. 2019;7(6):877–881. Available from: https://dx.doi.org/10.26438/ijcse/v7i6.877881
  17. Buya S, Tongkumchum P, Owusu BE. Modelling of land-use change in Thailand using binary logistic regression and multinomial logistic regression. Arabian Journal of Geosciences. 2020;13(12). Available from: https://dx.doi.org/10.1007/s12517-020-05451-2
  18. Al-Abaid SA. Artificial Neural Network Based Image Encryption Technique. Journal of Advanced Research in Dynamical and Control Systems. 2020;12(SP3):1184–1189. Available from: https://dx.doi.org/10.5373/jardcs/v12sp3/20201365
  19. Zainal A. pH Neutralization Plant Optimization Using Artificial Neural Network. Journal of Advanced Research in Dynamical and Control Systems. 2020;12(SP4):1466–1472. Available from: https://doi.org/10.5373/jardcs/v12sp4/20201625
  20. Veites-Campos SA, Ramírez-Betancour R, González-Pérez M. Identification of Cocoa Pods with Image Processing and Artificial Neural Networks. International Journal of Advanced Engineering, Management and Science. 2018;4(7):510–518. Available from: https://dx.doi.org/10.22161/ijaems.4.7.3
  21. Abbas A, Shamel M. Simulate Neural Networks for Recognition Fruits and Vegetables in the Supermarket. Al-Kitab Journal for Pure Sciences. 2018;2(1). Available from: https://dx.doi.org/10.32441/kjps.v2i1.139


© 2022 Baculio & Barbosa. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.