• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 24, Pages: 2404-2417

Original Article

Analysis and classification of ECG beat based on wavelet decomposition and SVM

Received Date:17 May 2020, Accepted Date:13 June 2020, Published Date:08 July 2020


Objectives: To extract the features of single arrhythmia ECG beat. To develop efficient algorithms for automated detection of arrhythmia based on ECG. Methods/Statistical analysis: The methodology includes pre-processing and segmentation of ECG. Extraction of ECG features are to support the ECG beat classification and analysis of cardiac abnormalities using machine learning techniques. Wavelet decomposition is considered for feature extraction and classification with multiclass support vector machine. Findings: This work evaluates the suitability of the wavelet features of ECG for classifier. The proposed arrhythmia classifier results in an accuracy up to 98% for various classes of arrhythmia considered in this work. Novelty/Applications: This work is an assistive tool for medical practitioners to examine ECG in a limited time with their expertise to make the accurate abnormality diagnosis of the arrhythmia.

Keywords: Arrhythmia; classification; feature extraction; support vector machine; wavelet decomposition


  1. Liu F, Liu C, Jiang X, Zhang Z, Zhang Y, Li J, et al. Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases. Journal of Healthcare Engineering. 2018;2018:1–8. Available from: https://dx.doi.org/10.1155/2018/9050812
  2. Osman J, Tan SC, Lee PY, Low TY, Jamal R. Sudden Cardiac Death (SCD) – risk stratification and prediction with molecular biomarkers. Journal of Biomedical Science. 2019;26(1):39–40. Available from: https://dx.doi.org/10.1186/s12929-019-0535-8
  3. Scirè A, Tropeano F, Anagnostopoulos A, Chatzigiannakis I. Fog-Computing-Based Heartbeat Detection and Arrhythmia Classification Using Machine Learning. Algorithms. 2019;12(32):1–21. Available from: https://dx.doi.org/10.3390/a12020032
  4. Qin Q, Li J, Zhang L, Yue Y, Liu C. Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification. Scientific Reports. 2017;7(1):6067. Available from: https://dx.doi.org/10.1038/s41598-017-06596-z
  5. Luz EJdS, Schwartz WR, Cámara-Chávez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: A survey. Computer Methods and Programs in Biomedicine. 2016;127:144–164. Available from: https://dx.doi.org/10.1016/j.cmpb.2015.12.008
  6. Alfarhan KA, Mashor MY, Saad ARM, Azeez HA, Sabry MM. Effects of the Window Size and Feature Extraction Approach for Arrhythmia Classification. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2017;30:1–11. Available from: https://dx.doi.org/10.4028/www.scientific.net/jbbbe.30.1
  7. Rahouma HK, Muhammad HR, Eldahab FAHMAA. Analysis of Electrocardiogram for Heart Performance Diagnosis Based on Wavelet Transform and Prediction of Future complications. Egyption Computer Science Journal. 2017;41(2):11–30. Available from: https://doi.org/10.13141/RG.2.2.35948.41608
  8. Yanowitz GF. Introduction to ECG Interpretation” V9.0, . Available from: http://library.med.utah.edu/kw/ecg/
  9. Tribhuvanam S, Nagaraj HC, Naidu VPS. Arrhythmia Classification with Single Beat ECG Evaluation and Support Vector Machine”. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2019;12:2278–3075.
  10. Sarkaleh MK. Classification Of Ecg Arrhythmias Using Discrete Wavelet Transform and Neural Networks. International Journal of Computer Science, Engineering and Applications. 2012;2(1):1–13. Available from: https://dx.doi.org/10.5121/ijcsea.2012.2101
  11. García M, Ródenas J, Alcaraz R, Rieta JJ. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. Computer Methods and Programs in Biomedicine. 2016;131:157–168. Available from: https://dx.doi.org/10.1016/j.cmpb.2016.04.009
  12. Zhe, Wang X, Xue. Springer International Publishing Switzerland. 2014. Available from: https://www.scribd.com/document/322745147/Support-Vector-Machines-Applications
  13. Hsu CW, Chang CC. 2016. Available from: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


© 2020 Tribhuvanam, Nagaraj, Naidu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.