• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 4, Pages: 361-372

Original Article

Application of Feature Based Principal Component Analysis (FPCA) technique on Landsat8 OLI multispectral data to map Kimberlite pipes

Received Date:25 September 2020, Accepted Date:12 January 2021, Published Date:02 February 2021


Objectives: To map the kimberlite pipes emplaced in parts of Anantpur District, India using Landsat-8 OLI multispectral data. Kimberlite are considered as the primary host of natural diamond. Kimberlite pipes have very limited exposure and are altered, therefore the indirect surface indicators associated with kimberlite such as ferric iron bearing minerals (hematite, goethite), hydroxyl (clay) and carbonate (calcrete) minerals, were mapped to trace kimberlite pipe. Methods: Feature based Principal Component Analysis (FPCA) was applied over the OLI bands 2, 4, 5 and 6, and 2, 5, 6 and 7 to generate ferric iron (F image) and hydroxyl/carbonate image (H/C images). The color composite was generated by assigning RGB colours to F, H/C and F+H/C images. Findings: When matched with the pre-explored kimberlite pipe locations, it was observed that the kimberlitic pipes display different colours in the above colour composite. Hence, the Isodata clustering was carried out to segregate the classes, which resulted in 12 unique classes. Of these, the kimberlite pipes fall in 4 classes. However, due to the moderate resolution of OLI, false positive areas were also noted. Further the target area was found to be reduced by incorporating the structural control (lineament) over the emplacement of Kimberlite pipes. Novelty: The present work highlights the usefulness of the moderate resolution multispectral image in mapping the Kimberlite pipes in semiarid region, in absence of a hyperspectral sensor.

Keywords: Kimberlite; Landsat8 OLI; feature based Principal Component Analysis (FPCA); Lineaments; Dharwar Craton


  1. Dawson JB, Kimberlites, Berlin. Kimberlites and their xenoliths Berlin. New York. Springer-Verlag. 1980.
  2. Clement CR, Skinner E. A textural-genetic classification of kimberlites. Geological Society of South Africa Transactions. 1985;88:403–409.
  3. Mitchell RH. Kimberlites: mineralogy, geochemistry and petrology. (Vol. 1) New York. Springer US. 1986.
  4. Fareeduddin, RHM. Diamonds and Their Source Rocks in Indi. Bangalore. Geological Society of India. 2012.
  5. Wagner PA. The Diamond Fields of Southern Africa. Lohannesburg. Transvaal Leader. 1914.
  6. Clifford TN. Tectono-metallogenic units and metallogenic provinces of Africa. Earth and Planetary Science Letters. 1966;1(6):421–434. Available from: https://dx.doi.org/10.1016/0012-821x(66)90039-2
  7. Dawson JB. The structural setting of African kimberlite magmatism. In: Clifford TN, Gass IG., eds. African Magmatism and Tectonics. Edinburgh. Oliver & Boyd . 1970.
  8. Ramadass G, Himabindu D, Veeraiah B. Morphostructural prognostication of kimberlites in parts of eastern dharwar craton: Inferences from remote sensing and gravity signatures. Journal of the Indian Society of Remote Sensing. 2006;34:111–121. Available from: https://dx.doi.org/10.1007/bf02991816
  9. Jaques AL. Kimberlite and lamproite diamond pipes. AGSO Journal of Australian Geology & Geophysics. 1998;17(4):153–162.
  10. Guha A, Ravi S, Rao DA, Kumar KV, Rao END. Issues and Limitations of Broad Band Remote Sensing of Kimberlite—A Case Example from Kimberlites of Dharwar Craton, India. International Journal of Geosciences. 2013;04(02):371–379. Available from: https://dx.doi.org/10.4236/ijg.2013.42035
  11. Keeling J, Mauger A, Raven M. Airborne Hyperspectral Survey and Kimberlite Detection in the Terowie District, South Australia. In: Roach IC., ed. Regolith. (pp. 166-170) 2004.
  12. Guha A, Kumar KV, Ravi S, Rao END. Reflectance spectroscopy of kimberlites—in parts of Dharwar Craton, India. Arabian Journal of Geosciences. 2015;8(11):9373–9388. Available from: https://dx.doi.org/10.1007/s12517-015-1850-3
  13. HLRP, Kusuma KN, SC, Guru B. Frequency ratio modelling using geospatial data to predict Kimberlite Clan of rock emplacement zones in Dharwar Craton, India. International Journal of Applied Earth Observation and Geoinformation. 2019;74:191–208. Available from: https://dx.doi.org/10.1016/j.jag.2018.08.019
  14. Atkinson WJ, Hughes FE, Smith CB. A review of the kimberlitic rocks of Western Australia. In: Komprobst J., ed. Proceedings of the Third International Kimberlite Conference. (Vol. 1) New York. Elsevier Press. 1984.
  15. Roy A. Calcrete to kimberlite: A prospector’s hunt for “kimberlite traits” in calcretes. Journal of the Geological Society of India. 2009;73(3):320–324. Available from: https://doi.org/10.1007/s12594-009-0012-1
  16. Macnae J. Applications of geophysics for the detection and exploration of kimberlites and lamproites. Journal of Geochemical Exploration. 1995;53(1-3):213–243. Available from: https://dx.doi.org/10.1016/0375-6742(94)00057-i
  17. Power M, Hildes D. Geophysical strategies for kimberlite exploration in northern Canada. Procedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. 2007;p. 1025–1031. Available from: http://www.dmec.ca/ex07-dvd/E07/pdfs/89.pdf
  18. Clark RN, Roush TL. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research: Solid Earth. 1984;89(B7):6329–6340. Available from: https://dx.doi.org/10.1029/jb089ib07p06329
  19. Sabins FF. Remote sensing for mineral exploration. Ore Geology Reviews. 1999;14(3-4):157–183. Available from: https://dx.doi.org/10.1016/s0169-1368(99)00007-4
  20. Crosta PA, Moore JM. Geological mapping using Landsat Thematic Mapper imagery in Almeria Province, south-east Spain. International Journal of Remote Sensing. 1989;10(3):505–514. Available from: https://dx.doi.org/10.1080/01431168908903888
  21. Loughlin WP. Principal Component Analysis for Alteration Mapping. Photogrammetric Engineering & Remote Sensing. 1991;57(9):1163–1169. Available from: https://www.asprs.org/wp-content/uploads/pers/1991journal/sep/1991_sep_1163-1169.pdf
  22. Sultan M, Arvidson RA, Sturchio NC, Guinness EA. Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geological Society of America Bulletin. 1987;99(6):748. Available from: https://dx.doi.org/10.1130/0016-7606(1987)99<748:lmiarw>2.0.co;2
  23. Kaufmann H. Mineral exploration along the Aqaba-Levantstructure by use of TM data; concepts, processing, and results. International Journal of Remote Sensing. 1988;9(10-11):1639–1658. Available from: https://doi.org/10.1080/01431168808954966
  24. Bennett SA, Atkinson WW, Kruse FA. Use of Thematic Mapper Imagery to Identify Mineralization in the Santa Teresa District, Sonora, Mexico. International Geology Review. 1993;35(11):1009–1029. Available from: https://dx.doi.org/10.1080/00206819309465572
  25. Tangestani MH, Moore F. Iron oxide and hydroxyl enhancement using the Crosta Method: a case study from the Zagros Belt, Fars Province, Iran. International Journal of Applied Earth Observation and Geoinformation. 2000;2(2):140–146. Available from: https://dx.doi.org/10.1016/s0303-2434(00)85007-2
  26. MR, RV. Geology of India. (Vol. I) Bangalore. Geological Society of India. 2008.
  27. Naqvi SM, Rogers JJW. Precambrian Geology of India. In: Oxford Monographs on Geology and Geophysics. Oxford University Press. 1987.
  28. Friend CRL, Nutman AP. SHRIMP U-Pb geochronology of the Closepet granite and peninsular gneisses. Journal of Geological. Society of India. 1991;38(4):357–368. Available from: http://www.geosocindia.org/index.php/jgsi/article/view/66805
  29. Chadwick B, Vasudev VN, NA. The Sandur schist belt and its adjacent plutonic rocks: implications for late Archaean crustal evolution in Karnataka. Journal of the Geological Society of India. 1996;7:37–57.
  30. MR, Vaidyanadhan R. Geology of India. (Vol. 2) Geological Society of India. 2010.
  31. Moyen JF, Martin H, Jayananda M, Auvray B. Late Archaean granites: a typology based on the Dharwar Craton (India) Precambrian Research. 2003;127(1-3):103–123. Available from: https://dx.doi.org/10.1016/s0301-9268(03)00183-9
  32. Kumar A, Kumari VMP, Dayal AM, Murthy DSN, Gopalan K. RbSr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacement. Precambrian Research. 1993;62(3):227–237. Available from: https://dx.doi.org/10.1016/0301-9268(93)90023-u
  33. Paul DK, SSN, Pant NC. Indian kimberlites and related rocks: petrology and geochemistry. Journal of the Geological Society of India. 2006;67(3):328–355. Available from: http://www.geosocindia.org/index.php/jgsi/article/view/81919
  34. Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, et al. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment. 1993;44(2-3):145–163. Available from: https://dx.doi.org/10.1016/0034-4257(93)90013-n
  35. Matthew MW, Adler-Golden SM, Berk A, Richtsmeier SC, Levine RY, Bernstein LS, et al. Status of atmospheric correction using a MODTRAN4-based algorithm. InAlgorithms for multispectral, hyperspectral, and ultraspectral imagery VI. In: International Society for Optics and Photonics. (Vol. 4049, pp. 199-207) 2000.
  36. Tou JT, Gonzalez RC. Pattern Recognition Principles. Reading, Massachusetts. Addison-Wesley Publishing Company. 1974.


© 2021 Kusuma & Lakshmi Ram Prasath.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.