• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 14, Pages: 1505-1511

Original Article

Arsenic transport in canal water and across rice fields in district Badin

Received Date:03 March 2020, Accepted Date:20 April 2020, Published Date:29 May 2020


Background/Objectives: Irrigation water at Phuleli and Akram canals carry the waste of Hyderabad city and other places on the way to rice fields at lower part of Indus Plain. The long term use of arsenic contaminated irrigation water can accumulate arsenic in rice soils. This study evaluated total arsenic in irrigation water and transported load to rice sites, in addition to the arsenic concentration in main canals and waste sites on the way to Badin. Methods: Atomic absorption spectrophotometer equipped with hydride vapor assembly was used to analyze the arsenic concentrations in irrigation water. Findings: Currently, the irrigation water quality was generally within the permissible limits of FAO for rice. All types of wastes (14.62-37.2 µg L-1) entering the Phuleli and Akram canals (7.08 µg L-1) on the way contributed to total arsenic (6.30-57.12 µg L-1) in irrigation water at the entrance of rice sites. However, higher arsenic contamination in irrigation water was due to sugar industry waste (37.2 µg L-1) and lowest due to city waste of Badin (14.62 µg L-1). The data indicated that mean total arsenic concentration from irrigation water would load 0.12 and 0.14 mg kg-1 of arsenic annually in soils on the basis of net 1000 and 1300 mm a-1 water application to rice, respectively. Applications/Improvements: The results clearly indicated that waste added from different sources may aggravate the arsenic contamination of canal water and yet the accumulation in rice fields will keep on increasing. It is suggested that waste must be treated before releasing to prevent contamination of rice field.

Keywords: Arsenic load, City waste, Contamination, Industrial waste


  1. Fao. Water quality for agriculture. . In: RS A, DW W., eds. Irrigation and drainage. Rome Italy. 1985.
  2. Wattoo MH, Wattoo S, Tirmizi SA, Kazi TG, Bhanger MI, Iqbal J. Pollution of Phuleli canal water in the city premises of Hyderabad: Metal monitoring. Journal of the Chemical Society of Pakistan. 2006;28(2):136–143.
  3. Mahessar AA, Qureshi AL, Mukwana KC, Laghari AN. Impact of urban and effluent of Hyderabad city on fresh water Pinyari canal. Quad-e-Awam University Research Journal of Engineering, Science and Technology. 2015;14(2):57–63.
  4. Luo W, Lu Y, Wang G, Shi Y, Wang T, Giesy JP. Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere. 2008;72(5):797–802. doi: 10.1016/j.chemosphere.2008.03.003
  5. Fendorf S, Michael HA, Geen Av. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science. 2010;328(5982):1123–1127. doi: 10.1126/science.1172974
  6. Khan MA, Yuh HS. Arsenic in drinking water: A review of toxicological effects, mechanism of accumulation and remediation. Asian Journal of Chemistry. 2011;23(5):1889–1901.
  7. Baig JA, Kazi TG, Arain MB, Afridi HI, Kandhro GA, Sarfraz RA, et al. Evaluation of arsenic and physico-chemical parameters of surface and ground water of Jamshoro. Journal of Hazardous Materials. 2009;166(2-3):662–669.
  8. Adeli A, Sistani KR, Tewolde H, Rowe DE. BROILER LITTER APPLICATION EFFECTS ON SELECTED TRACE ELEMENTS UNDER CONVENTIONAL AND NO-TILL SYSTEMS. Soil Science. 2007;172(5):349–365. doi: 10.1097/ss.0b013e318032ab7d
  9. Kazi TG, Baig JA, Shah AQ, Arain MB, Jamali MK, Kandhro GA, et al. Determination of Arsenic in Scalp Hair of Children and its Correlation with Drinking Water in Exposed Areas of Sindh Pakistan. Biological Trace Element Research. 2011;143(1):153–162. doi: 10.1007/s12011-010-8866-z
  10. Khan A, Hussain V, Bakhtiari AE, Khan H, Arsalan M. Ground water arsenic contamination in semi-urban areas of Tando Muhammad Khan district: A case study from deltaic fold plain in Sindh, Pakistan. Sustainability in Environment. 2017;2(2):171–191.
  11. Brahman KD, Kazi TG, Afridi HI, Baig JA, Arain SS, Talpur FN, et al. Exposure of children to arsenic in drinking water in Tharparkar region of Sindh. Science of the Total Environment. 2016;544:653–660.
  12. Rasool A, Farooqi A, Mahmood S, Hussain K. Arsenic in ground water and its health risk assessment in drinking water of Mailsi. An International Journal. 2015;22(1):187–202.
  13. Rasool A, Xiao T, Farooqi A, Shafeeque M, Masood S, Ali S, et al. Arsenic and heavy metal contaminations in the tube well water of Punjab, Pakistan and risk assessment: A case study. Ecological Engineering. 2016;95:90–100. doi: 10.1016/j.ecoleng.2016.06.034
  14. Us-Epa. Categorization of hazardous waste sites-A method manual. Available sampling methods. 1984;II.
  15. Apha A, W. Standard methods for examination of water and wastewater. Washington DC. American Public Health Association. 1998.
  16. C E, T G, D S, W O, W D, ML P. Soil Pollution Due to Irrigation with Arsenic-Contaminated Groundwater: Current State of Science. Current Pollution Report. 2017;1(1):1–12.
  17. Ijaz MW, Mahar RB, Sloangi GS, Panhwar S, Ansari AK. Impairment of water quality of Phuleli canal. Sindh Pakistan: A Review. Mehran University Research Journal of Engineering and Technology. 2017;36(3):681–692.
  18. Andreae MO, Andreae TW. Dissolved arsenic species in the Schelde estuary and watershed, Belgium. Estuarine Coastal Shelf Science. 1989;29(5):421–433. doi: 10.1016/0272-7714(89)90077-2
  19. Samuel FA, Mohan V, Rebecca LJ. Physicochemical and heavy metal analysis of sugar mill effluent. Journal of Chemical and Pharmaceutical Research. 2014;6(4):585–587.
  20. Durum WH, Hem JD, Heidel SG. US Geological Survey Circular Reconnaissance of selected minor elements in surface waters of the United States. 1971.
  21. Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, et al. High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice. Environmental Science & Technology. 2008;42(13):5008–5013. doi: 10.1021/es8001103
  22. Smedley PL, Nicolli HB, Macdonald D, Barros AJ, Tullio JO. Hydrochemistry of arsenic and other inorganic constituents in ground waters from La Pampa. Argentina. Applied Geochemistry. 2002;17(3):259–284.
  23. Baig JA, Kazi TG, Shah AQ, Arain MB, Afridi HI, Khan S, et al. Evaluating the accumulation of arsenic in maize (Zea mays L.) plants from its growing media by cloud point extraction. Food and Chemical Toxicology. 2010;48(11):3051–3057. doi: 10.1016/j.fct.2010.07.043
  24. Kabir MS, Salam MA, Paul DNR, Hossain MI, Rahman NMF, Aziz A, et al. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study. The Scientific World Journal. 2016;2016:1–14. doi: 10.1155/2016/2186069


© 2020 Chohan, Memon, Rajpar, Khooharo, Kumbhar, Kakar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.