• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 19, Pages: 1587-1597

Original Article

Artificial Neural Networks Based Integrated Crop Recommendation System Using Soil and Climatic Parameters

Received Date:12 January 2021, Accepted Date:15 May 2021, Published Date:06 February 2021


Objective : To develop crop recommendation system depending on location specific soil and climatic conditions. Method: The study introduces a novel recommendation system which uses Artificial Neural Networks (ANN) for recommending the suitable crop. The crops are recommended based on (a) Soil properties (b) Crop characteristics (c) Climate parameters. The crops namely maize, Finger millet, Rice and sugarcane is considered for the study. Depending on degree of relationship and limitations of the factors considered, following suitability classes are established: (a) Highly suitable: S1 (b) Moderately suitable: S2 (c) Marginally suitable: S3 (d) not suitable. The system uses the climate data from Meteorological survey of India and the soil data of Hadonahalli and Durgenahalli of Doddaballapur (dist.), Karnataka, India. The user interface developed takes the location specific soil properties as real time input and recommends the suitable crop considering the input and climate parameters. Findings: For the measurement of accuracy the model was tested on with ANN and decision tree. Overall accuracy value of ANN is 96% where the accuracy value of Decision tree is 91.5%. Hence the results obtained from ANN can be considered more efficient. Novelty: The number of models developed for crop recommendation is limited and the proposed model serves as the promising aspect in the planning of crops.

Keywords: Crop recommendation; ANN; Soil characters; Climate; MongoDB


  1. Shankarnarayan VK, Ramakrishna H. Paradigm change in Indian agricultural practices using Big Data: Challenges and opportunities from field to plate. Information Processing in Agriculture. 2020;7(3):355–368. Available from: https://dx.doi.org/10.1016/j.inpa.2020.01.001
  2. Naidu LGK, Ramamurthy V, Challa O, Hegde R, Krishnan P. Soil suitability criteria for major crops. Nagpur, India. 2006.
  3. Arbuckle JG, Hobbs J, Loy A, Morton LW, Prokopy LS, Tyndall J. Understanding Corn Belt farmer perspectives on climate change to inform engagement strategies for adaptation and mitigation. Journal of Soil and Water Conservation. 2014;69(6):505–516. Available from: https://dx.doi.org/10.2489/jswc.69.6.505
  4. Wolfert S, Ge L, Verdouw C, Bogaardt MJ. Big Data in Smart Farming – A review. Agricultural Systems. 2017;153:69–80. Available from: https://dx.doi.org/10.1016/j.agsy.2017.01.023
  5. Rupnik R, Kukar M, Vračar P, Košir D, Pevec D, Bosnić Z. AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture. 2019;161:260–271. Available from: https://dx.doi.org/10.1016/j.compag.2018.04.001
  6. Pudumalar S, Ramanujam E, Rajashree RH, Kavya C, Kiruthika T, Nisha J. Crop recommendation system for precision agriculture. In: 2016 8th International Conference on Advanced Computing. (pp. 32-36) 2016.
  7. Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture. 2019;2:1–12. Available from: https://dx.doi.org/10.1016/j.aiia.2019.05.004
  8. J.Ransom C, R.Kitchen N, J.Camberato J, R.Carter P, B.Ferguson R, G.Fernández F, et al. Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture. 2019;164(104872). Available from: 10.1016/j.compag.2019.104872
  9. DuraisamyVasu, S.K.Singh, NishaSahu, PramodTiwary, P.Chandran, V.P.Duraisami, et al. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 2017;169:25–34. Available from: https://doi.org/10.1016/j.still.2017.01.006
  10. Letey J. Relationship between Soil Physical Properties and Crop Production. (pp. 277-294) New York, NY. Springer. 1958.
  11. Sirsat MS, Cernadas E, Fernández-Delgado M, Khan R. Classification of agricultural soil parameters in India. Computers and Electronics in Agriculture. 2017;135:269–279. Available from: https://dx.doi.org/10.1016/j.compag.2017.01.019
  12. Thornthwaite CW. An Approach toward a Rational Classification of Climate. Geographical Review. 1948;38(1):55–94. Available from: https://dx.doi.org/10.2307/210739
  13. Kumar KK, Kumar KR, Rakhecha PR. Comparison of Penman and Thornthwaite methods of estimating potential evapotranspiration for Indian conditions. Theoretical and Applied Climatology. 1987;38(3):140–146. Available from: https://dx.doi.org/10.1007/bf00868097
  14. Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks:. International Journal of Forecasting. 1998;14(1):35–62. Available from: https://dx.doi.org/10.1016/s0169-2070(97)00044-7
  15. Ali Z, Hussain I, Faisal M, Nazir HM, Hussain T, Shad MY, et al. Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model. Advances in Meteorology. 2017;2017(5681308 ). Available from: https://doi.org/10.1155/2017/5681308
  16. Vujičić T, Matijevi T. Comparative Analysis of Methods for Determining Number of Hidden Neurons in Artificial Neural Network,” Cent. Eur. Conf. Inf. Intell. Syst. 2016;p. 219–223.
  17. Feng J, Lu S. Performance Analysis of Various Activation Functions in Artificial Neural Networks. Journal of Physics: Conference Series. 2019;1237(2):111–122. Available from: https://doi.org/10.1088/1742-6596/1237/2/022030
  18. Ramachandran P, Zoph B, Le QV. Searching for Activation Functions. arXiv.org. 2018. Available from: 1710.05941
  19. Parwez MA, Abulaish M, Jahiruddin. Multi-Label Classification of Microblogging Texts Using Convolution Neural Network. IEEE Access. 2019;7:68678–68691. Available from: https://dx.doi.org/10.1109/access.2019.2919494
  20. Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture. 2018;151:61–69. Available from: https://dx.doi.org/10.1016/j.compag.2018.05.012
  21. Hancock JT, Khoshgoftaar TM. Survey on categorical data for neural networks. Journal of Big Data. 2020;7(1):1–41. Available from: https://dx.doi.org/10.1186/s40537-020-00305-w


© 2021 Madhuri & Indiramma.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.