• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 44, Pages: 4090-4097

Original Article

Assessing the Environmental Impact of Heavy Metal Contamination in Water, Sediments, and Aquatic Vegetation of River Yamuna in Delhi

Received Date:10 August 2023, Accepted Date:24 October 2023, Published Date:28 November 2023


Objective: The 22 Km Delhi stretch is a most polluted region of the Yamuna River. The current study was conducted to determine the physio-chemical and biological parameters of Yamuna River water along with heavy metals in water, sediment, and aquatic plants in Delhi. Methods: The water physio-chemical and heavy metals in sediments as well as aquatic plants were determined by standard procedures. Findings: The values of total dissolved solids (TDS), turbidity, phosphate (PO4), dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), Nickel (Ni) and lead (Pb) in water samples varied from 544 to 1134 mg L-1, 8 to 53 NTU, 0.11 to 1,46, 2.6 to 8.4, 3.2 to 28.4, 30 to 280, 0,36 to 1.45, 0.16 to 0.41, 0.02 to 0.14, BDL to 0.06, 0.03 to 0.09 and 0.02 to 0.08 mg L-1, respectively. The results confirmed that TDS, turbidity, PO4, Fe, Zn, Ni and Pb values surpassed the acceptable limit of BIS (2012) in all the water samples. The seven downstream sites showed a higher BOD5 level than prescribed by WHO (5mg/l). The Water Quality Index (WQI) ranged from 74 to 278, indicating that the water quality of downstream sites, after Wazirabad, was not found suitable for drinking purposes and fish culture. The enrichment factor (EF) for Zn (1.18-13.7), Cu (1.53-10.9, Ni (2.84-9.02), and Pb (1.36-8.99) was found to be quite high in the sediments. The aquatic plant Ranunculus sceleratus had high accumulations of Ni (246 mg kg-1), Pb (276 mg kg-1), and Zn (154 mg kg-1) metals, whereas Cu (236 mg kg-1) and Cr (40 mg kg-1) were found to be maximum in Eicchornia crassipes. All the samples of plants surpassed the threshold level of Cr, Ni and Pb. Novelty : The outcome of this study shows that the Yamuna River is badly polluted in the Delhi region. It is pertinent to create a robust wastewater treatment facility for the entire Delhi region before discharging into the Yamuna River.

Keywords: Heavy Metals, River Yamuna, Sediment, Aquatic Vegetation, Enrichment Factor


  1. Parihar K, Sankhla MS, Kumar R, Singh A. Assessment of Copper and Iron Concentration in Water of Yamuna River, Delhi, India. Letters in Applied NanoBioScience. 2021;10(2):2251–2257. Available from: https://doi.org/10.33263/LIANBS102.22512257
  2. Mehra A, Fargo ME, Banerjee DK. A study of Eicchornia crassipee growing in over-bank flood plain soils of river Yamuna in Delhi,India. Environment Monitoring and Assessment. 2000;60(1). Available from: https://doi.org/10.1023/A:1006181516828
  3. Bhuyan MS, Bakar MA. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Environmental Science and Pollution Research. 2017;24(35):27587–27600. Available from: https://doi.org/10.1007/s11356-017-0204-y
  4. Singh MK, Anbazhahan N, Gowtham B. An Integrated assessment on LULC changes and Groundwater Quality in Ambattur Zone of Metropolitan Chennai, India. Indian Journal Of Science And Technology. 2022;15(46):2515–2526. Available from: https ://doi.org/10.17485/IJST/v15i46.1519
  5. Lokhande S, Tare V. Spatio-temporal trends in the flow and water quality: response of river Yamuna to urbanization. Environmental Monitoring and Assessment. 2021;193(3):117. Available from: https://doi.org/10.1007/s10661-021-08873-x
  6. Chinmalli R, Vijayakumar K. Evaluation of health risk and heavy metal pollution status in the Bhima River water Kalaburagi, Karnataka, India. Current World Environment. 2023;18(1):197–213. Available from: http://dx.doi.org/10.12944/CWE.18.1.17
  7. Jaiswal M, Gupta SK, Chabukdhara M, Nasr M, Nema AK, Hussain J, et al. Heavy metal contamination in the complete stretch of Yamuna river: A fuzzy logic approach for comprehensive health risk assessment. PLOS ONE. 2022;17(8):e0272562. Available from: https://doi.org/10.1371/journal.pone.0272562
  8. Hamidi MD, Kissane S, Bogush AA, Karim AQ, Sagintayev J, Towers S, et al. Spatial estimation of groundwater quality, hydrogeochemical investigation, and health impacts of shallow groundwater in Kabul city, Afghanistan. Sustainable Water Resources Management. 2023;9(1). Available from: https://doi.org/10.1007/s40899-022-00808-9
  9. Li X, Shen H, Zhao Y, Cao W, Hu C, Sun C. Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China. International Journal of Environmental Research and Public Health. 2019;16(16):2861. Available from: https://doi.org/10.3390/ijerph16162861
  10. Kaushik A, Kansal A, Santosh, Meena, Kumar S, Kaushik CP. Assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials. 2009;164(1):265–270. Available from: https://doi.org/10.1016/j.jhazmat.2008.08.031
  11. Sharma HR, Trivedi RC, Akolkar P, Gupta A. Micropollutants Levels In Macroinvertebrates Collected From Drinking Water Sources Of Delhi, India. International Journal of Environmental Studies. 2003;60(2):99–110. Available from: https://doi.org/10.1080/00207230304735
  12. APHA, AWWA, WEF. Standard methods for the examination of water and waste water. Washington, DC. American Public Health Association. 1992.
  13. Bhattacharya A, Dey P, Gola D, Mishra A, Malik A, Patel N. Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR. Environmental Monitoring and Assessment. 2015;187(1):4146. Available from: https://doi.org/10.1007/s10661-014-4146-2
  14. Joshi P, Chauhan A, Dua P, Malik S, Liou YAA. Physicochemical and biological analysis of river Yamuna at Palla station from 2009 to 2019. Scientific Reports. 2022;12(1):2870. Available from: https://doi.org/10.1038/s41598-022-06900-6
  15. Alloway BJ. Sources of Heavy Metals and Metalloids in Soils. In: AB., ed. Environmental Pollution. (Vol. 22, pp. 11-50) Springer Netherlands. 2013.
  16. Singh BP, Choudhury M, Samanta P, Gaur M, Kumar M. Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem. Sustainability. 2021;13(18):10330. Available from: https://doi.org/10.3390/su131810330
  17. Allen SE. Chemical analyses of ecological material. London. Blackwell Scientific Publications. 1989.
  18. Couto MCM, Ribeiro C, Ribeiro AR, Santos M, Tiritan ME, Pinto M, et al. Spatiotemporal distribution and sources of trace elements in Ave River (Portugal) Lower Basin: Estuarine water, sediments and indigenous flora. International Journal of Environmental Research. 2019;13:303–318. Available from: https://doi.org/10.1007/s41742-019-00174-z
  19. Al-Afify ADG, Abdel-Satar AM. Heavy Metal Contamination of the River Nile Environment, Rosetta Branch, Egypt. Water, Air, & Soil Pollution. 2022;233(8):302. Available from: https://doi.org/10.1007/s11270-022-05759-7


© 2023 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.