• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 20, Pages: 2057-2064

Original Article

Assessment of change in soil properties before and after flooding due to the rainy season in Bhindawas wetland, Jhajjar, Haryana (India)

Received Date:21 May 2020, Accepted Date:30 May 2020, Published Date:19 June 2020


Objectives: The purpose of the present study was to determine the changes in soil properties before and after flooding due to the rainy season in Bhindawas wetland. Method: A total of eighteen soil samples were collected from Bhindawas wetland, nine before and nine after flooding. Eighteen soil properties namely pH, electrical conductivity (EC), moisture content, exchangeable cations (sodium, potassium, calcium and magnesium), organic matter, total nitrogen, C/N ratio, total phosphorus and heavy metals (iron, zinc, copper, lead, nickel, chromium and cadmium) were measured. Heavy metals were determined by using atomic absorption spectrophotometer (AAS). The principal component analysis (PCA) and hierarchical cluster analysis were performed on soil properties data. Findings: Student t-test for independent variables showed that statistically significant variation occurred before and after flooding in soil properties namely, pH, moisture content, organic matter, total phosphorus, iron, zinc, lead and chromium. 85% variance in soil properties was shown by the first five PCs. The first PC explained the variation of 40.4%, which related to Zn, Fe, Mg, Ni, Cu and Pb soil parameters. Dendrogram of hierarchical cluster analysis shows the two clusters with five sub-clusters. The findings of this study strongly suggested that degradation due to water logging in the non-submerged area during the rainy season change the soil properties in the wetland. Applications : Presently, Bhindawas wetland is severely affected by various environmental problems. Results of this study will prove useful in the development of an effective management plan for the Bhindawas wetland by various agencies.

Keywords: Soil properties; Bhindawas wetland; principal component analysis; hierarchical cluster analysis


  1. Scott DA, Jones TA. Classification and inventory of wetlands: A global overview. Vegetatio. 1995;118(1-2):3–16. doi: 10.1007/bf00045186
  2. Foote AL, Pandey S, Krogman NT. Processes of wetland loss in India. Cambridge University Press (CUP). 1996. doi: 10.1017/s0376892900038248
  3. Supriyadi, IM, Herawati A, Purwanto, Sumani. Soil quality assessment in organic and non organic paddy fields in Susukan, Indonesia. Bulgarian Journal of Agricultural Science. 2018;24(5):777–784.
  4. Benitez E, Nogales R, Campos M, Ruano F. Biochemical variability of olive-orchard soils under different management systems. Applied Soil Ecology. 2006;32(2):221–231. doi: 10.1016/j.apsoil.2005.06.002
  5. Şeker C, Özaytekin HH, Negiş H, Gümüş İ, Dedeoğlu M, Atmaca E, et al. Assessment of soil quality index for wheat and sugar beet cropping systems on an entisol in Central Anatolia. Environmental Monitoring and Assessment. 2017;189(4):135. doi: 10.1007/s10661-017-5848-z
  6. Reddy KR, Kadlec RH, Flaig E, Gale PM. Phosphorus Retention in Streams and Wetlands: A Review. Critical Reviews in Environmental Science and Technology. 1999;29(1):83–146. doi: 10.1080/10643389991259182
  7. Kowalska JB, Mazurek R, Gąsiorek M, Zaleski T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health. 2018;40(6):2395–2420. doi: 10.1007/s10653-018-0106-z
  8. Dunnea J, Clarka MW, Corstanjeb R, Reddy KR. Legacy phosphorus in subtropical wetland soils: Influence of dairy, improved and unimproved pasture land use. Ecological Engineering. 2011;37:1481–1491.
  9. Snakin VV, Krechetov PP, Kuzovnikova TA, Alyabina IO, Gurov AF, Stepichev AV. The system of assessment of soil degradation. Soil Technology. 1996;8(4):331–343. doi: 10.1016/0933-3630(95)00028-3
  10. Huang C, Bai J, Shao H, Gao H, Xiao R, Huang L, et al. Changes in Soil Properties before and after Wetland Degradation in the Yellow River Delta, China. CLEAN - Soil, Air, Water. 2012;40(10):1125–1130. doi: 10.1002/clen.201200030
  11. Balasubramanian D, Arunachalam K, Arunachalam A. Soil microbial and biochemical properties as affected by floods in different landuse systems of Burachapori Wildlife Sanctuary, northeast India. Tropical Ecology. 2015;56(3):289–302.
  12. Allen SA. Chemical analysis of ecological materials. London. Blackwell. 1989.
  13. Andrews SS, Karlen DL, Mitchell JP. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment. 2002;90(1):25–45. doi: 10.1016/s0167-8809(01)00174-8
  14. Edicha J, Chup CP, Yahaya S. Soil organic matter flux in the Federal Capital Territory, Abuja, Nigeria. European Journal of Scientific Research. 2010;44(4):624–631.
  15. Czerepko J. A long-term study of successional dynamics in the forest wetlands. Forest Ecology and Management. 2008;255(3-4):630–642. doi: 10.1016/j.foreco.2007.09.039
  16. Deka R, Baruah B, Kalita J. Physico-chemical characteristics of soil of Kapla Beel, A freshwater wetland in Barpeta district, Assam. . Pollution Research. 2008;27(4):695–698.
  17. McLaughlin JW, Calhoon EBW, Gale MR, Jurgensen MF, Trettin CC. Biogeochemical cycling and chemical fluxes in a managed northern forested wetland, Michigan, USA. Forest Ecology and Management. 2011;261(3):649–661. doi: 10.1016/j.foreco.2010.11.019
  18. Givnish TJ, Volin JC, Owen VD, Volin VC, Muss JD, Glaser PH. Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers. Global Ecology and Biogeography. 2008;17(3):384–402. doi: 10.1111/j.1466-8238.2007.00371.x
  19. Mahajan G, Das B, Morajkar S, Desai A, Murgaokar D, Kulkarni R, et al. Soil quality assessment of coastal salt-affected acid soils of India. Environmental Science and Pollution Research. 2020. doi: 10.1007/s11356-020-09010-w
  20. Dai Z, Li R, Muhammad N, Brookes PC, Wang H, Liu X, et al. Principle Component and Hierarchical Cluster Analysis of Soil Properties following Biochar Incorporation. Soil Science Society of America Journal. 2014;78(1):205–213. doi: 10.2136/sssaj2013.05.0199
  21. Zolfaghari F, Khosravi H, Shahriyari A, Jabbari M, Abolhasani A. Hierarchical cluster analysis to identify the homogeneous desertification management units. PLOS ONE. 2019;14(12):e0226355. doi: 10.1371/journal.pone.0226355


 © 2020 Kumar, Dhankhar. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.