• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 20, Pages: 1461-1468

Original Article

Battery Technologies Comparison for Electric Vehicles

Received Date:19 November 2022, Accepted Date:31 December 2022, Published Date:05 January 2023

Abstract

Objectives: The purpose of this study is to provide an overview of the recent advancements in lithium ion (Li-ion), lead acid, and nickel metal hydride (NiMH) batteries utilized in electric vehicles (EVs). Methods: The study considered in improving the batteries’ performance concerning energy and power densities, safety, and cost. Various methods reported have been analysed and compared. Findings: For Li-ion batteries, researchers have developed new cathode and anode materials such as silicon, lithium-sulfur, and lithium-air. Solid-state electrolytes have also been explored to improve safety and longevity. In contrast, research on lead acid batteries has focused on enhancing their cycling performance, reducing their size and weight, and increasing efficiency. Finally, for NiMH batteries, researchers have developed nickel-cobalt-manganese cathodes to enhance energy and power densities. Recent research has been successful in improving battery performance for all three types. The use of silicon anodes and lithium-sulfur cathodes has resulted in significant improvements in energy density for Li-ion batteries. Additionally, carbon additives and new separator materials have improved cycling performance and efficiency for lead acid batteries. The use of nickelcobalt- manganese cathodes has led to improved energy and power densities for NiMH batteries. Novelty: The emphasizes for the development of new materials and technologies that address the limitations of existing battery technologies, thereby making EVs more practical and competitive with gaspowered vehicles. We have supported this review with a simple simulation of the batteries mentioned above, to explain their operation.

Keywords: Batteries Comparison; Lead Acid; Ni Mh; Li-Ion; DC Motor

References

  1. Li F, Liu Q, Hu J, Feng Y, He P, Ma J. Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale. 2019;11(33):15418–15439. Available from: https://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr04415a
  2. Wang H, Li T, Hashem AM, Abdel-Ghany AE, El-Tawil RS, Abuzeid HM, et al. Nanostructured Molybdenum-Oxide Anodes for Lithium-Ion Batteries: An Outstanding Increase in Capacity. Nanomaterials. 2021;12(1):13. Available from: https://doi.org/10.3390/nano12010013
  3. Zhang X, Li Z, Luo L, Fan Y, Du Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy. 2022;238:121652. Available from: https://doi.org/10.1016/j.energy.2021.121652
  4. Kalpana R, Nagde SJ, Dhoble. Li-S ion batteries: a substitute for Li-ion storage batteries. Energy Materials. 2021.
  5. Stenina I, Minakova P, Kulova T, Yaroslavtsev A. Electrochemical Properties of LiFePO4 Cathodes: The Effect of Carbon Additives. Batteries. 2022;8(9):111. Available from: https://doi.org/10.3390/batteries8090111
  6. Pinna EG, Toro N, Gallegos S, Rodriguez MH. A Novel Recycling Route for Spent Li-Ion Batteries. Materials. 2021;15(1):44. Available from: https://doi.org/10.3390/ma15010044
  7. Cusenza MA, Bobba S, Ardente F, Cellura M, Persio FD. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. Journal of Cleaner Production. 2019;215:634–649. Available from: https://doi.org/10.1016/j.jclepro.2019.01.056
  8. Zhu X, Ali RN, Song M, Tang Y, Fan Z. Recent Advances in Polymers for Potassium Ion Batteries. Polymers. 2022;14(24):5538. Available from: https://doi.org/10.3390/polym14245538
  9. Jing WT, Yang CC, Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. Journal of materials chemistry A. . 2020;8:2913–2933. Available from: https://doi.org/10.1039/C9TA11782B
  10. Chakraborty MR, Dawn S, Saha PK, Basu JB, Ustun TS. A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries. 8(9):124. Available from: https://doi.org/10.3390/batteries8090124
  11. Zheng Y, Yao Y, Ou J, Li M, Luo D, Dou H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews. 49(23):8790–8839. Available from: https://pubs.rsc.org/en/content/articlelanding/2020/cs/d0cs00305k
  12. Hou Wh, Lu Y, Ou Y, Zhou P, Yan S, He X, et al. Recent Advances in Electrolytes for High-Voltage Cathodes of Lithium-Ion Batteries. Transactions of Tianjin University. 2023. Available from: https://doi.org/10.1007/s12209-023-00355-0
  13. Sen S, Trevisanello E, Niemöller E, Shi BX, Simon FJ, Richter FH. The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Material Chemistry A. 2021;9:18701–18732. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta02796d
  14. Thieu NA, Li W, Chen X, Hu S, Tian H, Tran HNN, et al. An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries. 2023;9(1):41. Available from: https://doi.org/10.3390/batteries9010041
  15. Alvira D, Antorán D, Manyà JJ. Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chemical Engineering Journal. 2022;447:137468. Available from: https://doi.org/10.1016/j.cej.2022.137468
  16. Mauger, Julien, Paolella, Armand, Zaghib. Building Better Batteries in the Solid State: A Review. Materials. 2019;12(23):3892. Available from: https://doi.org/10.3390/ma12233892
  17. Yi Y, Hai F, Guo J, Tian X, Zheng S, Wu Z, et al. Progress and Prospect of Practical Lithium-Sulfur Batteries Based on Solid-Phase Conversion. Batteries . 2023;9(27). Available from: https://doi.org/10.3390/batteries9010027
  18. PL, Hu N, JW, SW, WD. Recent Progress and Perspective: Na Ion Batteries Used at Low Temperatures. Nanomaterials (Basel). 2022;12(19):3529. Available from: https://doi.org/10.3390/nano12193529
  19. FB, SDL, LF, DV, JA, CF, et al. An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials (Basel). 2021;11(3):810. Available from: https://doi.org/10.3390/nano11030810
  20. Nagamuthu S, Zhang Y, Xu Y, Sun J, Zhang Y, Zaman FU, et al. Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A. 2022;10(2):357–378. Available from: https://doi.org/10.1039/D1TA09119K
  21. Xiao M, Xing Z. Recent Progress of Lithium-Sulfur Batteries. Batteries. 2023;9(79). Available from: https://doi.org/10.3390/batteries9020079
  22. Xia-Yan JJ, Jun-Teng W, Yao, Qiu-Yu LS, Yong-Chang. Recent progress on layered oxide cathode materials for sodium-ion batteries. Chinese Journal of Engineering. 2022;44(4):601–611. Available from: https://doi.org/10.13374/j.issn2095-9389.2021.05.26.001
  23. Liu Y, Sun Z, Tan K, Denis DK, Sun J, Liang L, et al. Recent progress in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A. 2019;7(9):4353–4382. Available from: https://doi.org/10.1039/C8TA10258A
  24. Wu B, Chen C, Danilov DL, Eichel RA, Notten PHL. All-Solid-State Thin Film Li-Ion Batteries. New Challenges, New Materials, and New Designs. Batteries. 2023;9(186). Available from: https://doi.org/10.3390/batteries9030186
  25. Schmidt-Rohr K. How Batteries Store and Release Energy: Explaining Basic Electrochemistry. Journal of Chemical Education. 2018;95(10):1801–1810. Available from: https://doi.org/10.1021/acs.jchemed.8b00479
  26. Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Applied Thermal Engineering. 2019;149:192–212. Available from: https://doi.org/10.1016/j.applthermaleng.2018.12.020
  27. Chian YT, Wei WLJ, Ze ELM, Ren LZ, Ping YE, Bakar NZA, et al. A Review on Recent Progress of Batteries for Electric Vehicles. International Journal of Applied Engineering Research. 2019;14(24):4441–4461. Available from: https://www.ripublication.com/ijaer19/ijaerv14n24_07.pdf
  28. Amato A, Becci A, Villen-Guzman M, Carlos VA, Beolchini F. Challenges for sustainable lithium supply: A critical review. Journal of Cleaner Production. 2021;300(126954). Available from: https://doi.org/10.1016/j.jclepro.2021.126954
  29. Noudeng V, Quan NV, Xuan TD. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges. International Journal of Environmental Research and Public Health. 2022;19(23):16169. Available from: https://doi.org/10.3390/ijerph192316169
  30. Lai X, Yao J, Jin C, Feng X, Wang H, Xu C, et al. A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions. Batteries. 2022;8(11):248. Available from: https://doi.org/10.3390/batteries8110248
  31. Zhou L, Lai X, Li B, Yao Y, Yuan M, Weng J, et al. State Estimation Models of Lithium-Ion Batteries for Battery Management System: Status, Challenges, and Future Trends. Batteries. 2023;9(2):131. Available from: https://doi.org/10.3390/batteries9020131

Copyright

© 2023 Ourici. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.