• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 5, Pages: 427-431

Original Article

Bipolar single valued neutrosophic detour distance

Received Date:22 December 2020, Accepted Date:02 February 2021, Published Date:16 February 2021


Objectives: In the present article, we deduced a characterization of Bipolar Single Valued Neutrosophic (BSVN) radius and eccentricity of the vertex based on Bipolar Single Valued Neutrosophic set(BSVNS) detour. Method: We obtained some definitions BSVN on a vertex like BSVN detour eccentric vertex, BSVN detour radius, BSVN detour diameter, BSVN detour centered and BSVN detour periphery. Findings: We derived some important results based on these BSVN detour radius, diameter, center and periphery. Novelty: The detour distance of the BSVNS model is proposed and generalized by this. An important and suitable condition for the graphs of the Single Valued Neutrosophic Set(SVNS) model to BSVNS detour distances has been identified.

Keywords: Detour distance; BSVN detour eccentric; BSVN detour distance; BSVN detour peripheral node; BSVN detour path


  1. Broumi S, Smarandache F, Talea M, Bakali A. An Introduction to BSVN Graph Theory. Applied Mechanics and Materials. 2016;841:184–191. Available from: https://doi.org/10.4028/www.scientific.net/AMM.841.184
  2. Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338–353. Available from: https://dx.doi.org/10.1016/s0019-9958(65)90241-x
  3. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986;20:87–96. Available from: https://dx.doi.org/10.1016/s0165-0114(86)80034-3
  4. Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1989;31:343–349. Available from: https://dx.doi.org/10.1016/0165-0114(89)90205-4
  5. Atanassov K. Intuitionistic fuzzy sets: Theory and Applications. New York. Physica. 1999.
  6. Broumi S, Talea M, Bakali A, Smarandache F. On Bipolar Single Valued Neutrosphic Graphs. Journal of New Theory. 2016;11:84–102. Available from: https://doi.org/10.13140/RG.2.1.3354.0886
  7. Rao TSN, Kumar CS, Rao YS, Rao VV. Detour Interior and Boundary vertices of BSV Neutrosophic Graphs. International Journal of Advanced Science and Technology. 2020;29(8):2382–2394. Available from: http://sersc.org/journals/index.php/IJAST/article/view/23407
  8. Rao VV, Rao YS. Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology. International Journal of ChemTech Research. 2017;10(10):449–458.
  9. Reddy GU, Rao TSN, Rao VV, Rao YS. Minimal Spanning tree Algorithms w. r. t. Bipolar Neutrosophic Graphs. London Journal of Research in Science Natural and Formal. 2020;20(8):13–24. Available from: https://journalspress.com/LJRS_Volume20/1264_Minimal-Spanning-Tree-Algorithms-w-r-t-Bipolar-Neutrosophic-Graphs.pdf
  10. Kumar CS, Rao TSN, Rao YS, Rao VV. Interior and Boundary vertices of BSV Neutrosophic Graphs. Journal of Advanced Research in Dynamical Control Systems. 2020;12(6):1510–1515. Available from: https://doi.org/ 10.5373/JARDCS/V12I2/S20201348
  11. Rao YS, Kumar CS, Rao TSN, Rao VV, Rao. Single Valued Neutrosophic detour distance. Journal of Critical Reviews. 2020;7(8):810–812. Available from: https://doi.org/ 10.31838/jcr.07.08.173


© 2021 Reddy et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.