• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 27, Pages: 2300-2308

Original Article

Bitcoin Price Prediction Using Machine Learning and Artificial Neural Network Model

Received Date:20 May 2021, Accepted Date:15 July 2021, Published Date:11 August 2021


Objective: This paper explains the working of the linear regression and Long Short-Term Memory model in predicting the value of a Bitcoin. Due to its raising popularity, Bitcoin has become like an investment and works on the Block chain technology which also gave raise to other crypto currency. This makes it very difficult to predict its value and hence with the help of Machine Learning Algorithm and Artificial Neural Network Model this predictor is tested. Methodology: In this study, we have used data sets for Bitcoin for testing and training the ML and AI model. With the help of python libraries, the data filtration process was done. Python has provided with a best feature for data analysis and visualization. After the understanding of the data, we trim the data and use the features or attributes best suited for the model. Implementation of the model is done and the result is recorded. Finding: It was discovered that the linear regression model’s accuracy rate is very high when compared to other Machine Learning models from related works; it was found to be 99.87 percent accurate. The LSTM model, on the other hand, shows a mini error rate of 0.08 percent. This, in turn, demonstrates that the neural network model is more optimized than the machine learning model. Novelty: In this work, a small GUI has been created using the tkinter library that will allow the user to input the High, Low, and Open features values and then predict the next value for the coin. This paper compares the prediction outcomes of a machine learning model and an artificial neural network model. Because linear regression provided the highest accuracy compared to the other machine learning models, we used it to compare it to the LSTM model.

Keywords: Bitcoin; Block chain; Crypto currency; Machine Learning; Artificial Neural Network


  1. Shankhdhar A, Singh AK, Naugraiya S, Saini PK. Bitcoin Price Alert and Prediction System using various Models. IOP Conference Series: Materials Science and Engineering. 2021;1131(1):012009. Available from: https://dx.doi.org/10.1088/1757-899x/1131/1/012009
  2. Mittal R, Arora S, Bhatia MP. Automated cryptocurrencies prices prediction using machine learning. ICTACT Journal on Soft Computing. 2018;8(4):1758–1761. Available from: http://ictactjournals.in/paper/IJSC_Vol_8_Iss_4_Paper_8_1758_1761.pdf
  3. Phaladisailoed T, Numnonda T. Machine learning models comparison for bitcoin price prediction. 10th International Conference on Information Technology and Electrical Engineering. 2018;p. 506–511. Available from: 10.1109/ICITEED.2018.8534911
  4. Jaquart P, Dann D, Weinhardt C. Short-term bitcoin market prediction via machine learning. The Journal of Finance and Data Science. 2021;7:45–66. Available from: 10.1016/j.jfds.2021.03.001
  5. Rane PV, Dhage SN. Systematic erudition of bitcoin price prediction using machine learning techniques. 5th International Conference on Advanced Computing & Communication Systems (ICACCS). 2019;p. 594–598. Available from: 10.1109/ICACCS.2019.8728424
  6. Roy R, Roy S, Hossain MN, Alam MZ, Nazmul N. Study on nonlinear partial differential equation by implementing MSE method. Global Scientific Journals. 2020;8(1):1651–1665.
  7. Waskom M. Seaborn: statistical data visualization. Journal of Open Source Software. 2021;6(60):3021. Available from: https://dx.doi.org/10.21105/joss.03021
  8. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, et al. Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics. 2014;8:14. Available from: https://dx.doi.org/10.3389/fninf.2014.00014
  9. Awoke T, Rout M, Mohanty L, Satapathy SC. Bitcoin price prediction and analysis using deep learning models. In: Communication Software and Networks 2021. (pp. 631-640) Springer.. 10.1007/978-981-15-5397-4_63
  10. Livieris IE, Stavroyiannis S, Pintelas E, Kotsilieris T, Pintelas P. A dropout weight-constrained recurrent neural network model for forecasting the price of major cryptocurrencies and CCi30 index. Evolving Systems. 2021;3:1–6. Available from: 10.1007/s12530-020-09361-2
  11. Valencia F, Gómez-Espinosa A, Valdés-Aguirre B. Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning. Entropy. 2019;21(6):589. Available from: https://dx.doi.org/10.3390/e21060589
  12. Chowdhury R, Rahman MA, Rahman MS, Mahdy MRC. An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning. Physica A: Statistical Mechanics and its Applications. 2020;551(124569). Available from: https://dx.doi.org/10.1016/j.physa.2020.124569
  13. Akyildirim E, Goncu A, Sensoy A. Prediction of cryptocurrency returns using machine learning. Annals of Operations Research. 2021;297(1-2):3–36. Available from: https://dx.doi.org/10.1007/s10479-020-03575-y
  14. Huang X, Zhang W, Huang Y, Tang X, Zhang M, Surbiryala J, et al. 2021.


© 2021 Ho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.