• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 21, Pages: 1032-1040

Original Article

Analyzing the Efficiency of Di-FeNPs in Removal of Methyl Orange Dye using Statistical Approach

Received Date:29 March 2022, Accepted Date:30 April 2022, Published Date:09 June 2022

Abstract

Objective: To study the catalytic potential of green synthesized iron nanoparticles for the removal of methyl orange dye. Method: Response Surface Methodology (RSM) was applied based on the Box-Behnken Design (BBD) which determined the interactive influence of parameters i.e., pH (1-3), adsorbent dose (80-120mg), initial dye concentration (5-15 ppm), contact time (60-90 minutes), and temperature (30-40oC) on methyl orange removal. Findings: BBD-RSM demonstrated that the Di-FeNPs achieved the maximum efficiency of 98% of methyl orange dye removal. In the present Model, F-value 214.94 implicates the significance of the model. The predicted R2 of 0.9782 is closer to the adjusted R2 of 0.989 which shows a good consistency among experimental and predicted values. The experimental data were analyzed by applying Redlich- Peterson (R2= 0.982), Elovich (R2= 0.981), and Dubinin-Radushkevich (R2= 0.991) isotherms models. Novelty and applications: The statistical approach using the Box-Behnken design indicates that this model is specific and accurate for the applied experimental data. Green synthesized iron nanoparticles have the potential to remove (98%) methyl orange dye.

Keywords: Iron nanoparticles; Methyl orange; Green synthesis; Response surface methodology; Datura inoxia; Isotherms

References

  1. Jawad AH, Bardhan M, Islam MA, Islam MA, Syed-Hassan SSA, Surip SN, et al. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces. 2020;21:100688. Available from: https://doi.org/10.1016/j.surfin.2020.100688
  2. Jawad AH, Abdulhameed AS, Wilson LD, Syed-Hassan SSA, Alothman ZA, Khan MR. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese Journal of Chemical Engineering. 2021;32:281–290. Available from: https://doi.org/10.1016/j.cjche.2020.09.070
  3. Thacker H, Ram V, DN. Plant mediated synthesis of Iron nanoparticles and their Applications: A Review. Progress in Chemical and Biochemical Research. 2019;2(3):84–91. doi: 10.33945/SAMI/pcbr.2019.183239.1033
  4. Bonaccorso A, Russo G, Pappalardo F, Carbone C, Puglisi G, Pignatello R, et al. Quality by design tools reducing the gap from bench to bedside for nanomedicine. European Journal of Pharmaceutics and Biopharmaceutics. 2021;169:144–155. Available from: https://doi.org/10.1016/j.ejpb.2021.10.005
  5. Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, et al. Magnetic Chitosan-Glutaraldehyde/Zinc Oxide/Fe3O4 Nanocomposite: Optimization and Adsorptive Mechanism of Remazol Brilliant Blue R Dye Removal. Journal of Polymers and the Environment. 2021;29(12):3932–3947. Available from: doi.org/10.1007/s10924-021-02160-z
  6. Abdulhameed AS, Mohammad ATT, Jawad AH. Modeling and mechanism of reactive orange 16 dye adsorption by chitosan-glyoxal/TiO2 nanocomposite: application of response surface methodology. DESALINATION AND WATER TREATMENT. 2019;164:346–360. doi: 10.5004/dwt.2019.24384
  7. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Applied Physics A. 2018;124(5):1–7. Available from: https://doi.org/10.1007/s00339-018-1782-3.
  8. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chemical Engineering Journal. 2011;172(1):258–266. Available from: https://doi.org/10.1016/j.cej.2011.05.103
  9. Sharma Y, Bhateria R. Phytoproduction of iron nanoparticles for methyl orange removal and its optimization studies. Plant Archives. 2021;21(no 1):939–954. Available from: https://doi.org/10.51470/
  10. Ghasemi SM, Ghaderpoori M, Moradi M, Taghavi M, Karimyan K. Application of Box-Behnken design for optimization of malachite green removal from aqueous solutions by modified barley straw. Global NEST: the international Journal. 2020;22(3):390–399. Available from: https://doi.org/10.30955/gnj.003089
  11. Mohammad ATT, Abdulhameed AS, Jawad AH. Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies. International Journal of Biological Macromolecules. 2019;129:98–109. Available from: https://doi.org/10.1016/j.ijbiomac.2019.02.025
  12. Lange K, Bruder A, Matthaei CD, Brodersen J, Paterson RA. Multiple-stressor effects on freshwater fish: Importance of taxonomy and life stage. Fish and Fisheries. 2018;19(6):974–983. doi: 10.1111/faf.12305
  13. Ahmad A, Rehman MU, Wali AF, El-Serehy HA, Al-Misned FA, Maodaa SN, et al. Box–Behnken Response Surface Design of Polysaccharide Extraction from Rhododendron arboreum and the Evaluation of Its Antioxidant Potential. Molecules. 2020;25(17):3835. doi: 10.3390/molecules25173835
  14. Boateng EY, Abaye DA. A Review of the Logistic Regression Model with Emphasis on Medical Research. Journal of Data Analysis and Information Processing. 2019;07(04):190–207. doi: 10.4236/jdaip.2019.74012
  15. Xiang H, Ren G, Yang X, Xu D, Zhang Z, Wang X. A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system. Ecotoxicology and Environmental Safety. 2020;200:110744. Available from: https://doi.org/10.1016/j.ecoenv.2020.110744
  16. Kajjumba GW, Yıldırım E, Aydın S, Emik S, Ağun T, Osra F, et al. A facile polymerisation of magnetic coal to enhanced phosphate removal from solution. Journal of Environmental Management. 2019;247:356–362. Available from: https://doi.org/10.1016/j.jenvman.2019.06.088
  17. Riyanto CA, Prabalaras E. The adsorption kinetics and isoterm of activated carbon from Water Hyacinth Leaves (Eichhornia crassipes) on Co(II) Journal of Physics: Conference Series. 2019;1307(1):012002. doi: 10.1088/1742-6596/1307/1/012002
  18. Yeşilova E, Osman B, Kara A, Özer ET. Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption. Separation and Purification Technology. 2018;200:155–163. Available from: https://doi.org/10.1016/j.seppur.2018.02.002

Copyright

© 2022 Sharma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.