• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 31, Pages: 2398-2408

Original Article

Brain MRI/CT Contrast Enhancement using Hybrid Transformation

Received Date:10 April 2023, Accepted Date:25 June 2023, Published Date:14 August 2023


Objectives: To develop a better method for enhancing head MRI or CT images with the objective of suppressing irrelevant information during subsequent processing. Methods: To achieve this, two innovative image enhancement techniques, ’AHE’ and ’Adaptive Gamma with CDF-based Geometric Transformation,’ are combined. The proposed method is evaluated using a total of 76 MRI and 137 CT scan images obtained from the TCIA, OASIS, BCIIHM, and Brain metastases datasets. To tailor these methods for head MRI and CT images, two background masking algorithms have been introduced in this regard. Furthermore, the dark, grey, and white segments of the histogram are identified and geometrically transformed into square areas, followed by a gamma transformation applied to each transformed segment. Finally, a combination of global gamma transformation and AHE is applied to achieve the final enhancement. The proposed method is compared with other state-of-the-art techniques based on evaluation parameters such as ”contrast, ”correlation, and ”entropy. Findings: Both qualitative and quantitative analysis exhibit how the proposed method has better enhancement capability than the CLAHE, AGC, and EGC methods. Our approach yields the highest average contrast, correlation, and entropy values for MRI, measuring 0.522319529, 0.957321634, and 5.585280467, respectively. For CT images, the suggested approach produces the maximum entropy value, 3.472600537, and the average contrast, 0.151943828, which is just less than CLAHE. The average correlation for CT, 0.98799312, is also a hair less than EGC. These results suggest that the proposed method could potentially make the details and structures in the MRI and CT more distinguishable. Novelty : The suggested approach uses a 2D geometric transformation for enhancing contrast of brain CT/MRI images and two robust head masking processes for removing noise in the background. The comparative analysis shows that the proposed method exhibits superior contrast enhancement capability compared to the other three methods being compared.

Keywords: Adaptive power law; CDF based Geometric Transformation; CT Enhancement; Head Masking; MRI Enhancement


  1. Radhika R, RM. Medical Image Enhancement: A Review . In: Proceedings of International Conference on Data Science and Applications. (Vol. 26, pp. 105-118) Springer Singapore. 2021.
  2. S P, KP B, S B, RK M. Comparative Study on Histogram Equalization Techniques for Medical Image Enhancement [Internet] . Advances in Intelligent Systems and Computing. 2019;p. 657– 669. Available from: http://dx.doi.org/10.1007/978-981-15-0035-0_54
  3. Rubini C, Pavithra N. Contrast Enhancementof MRI Images using AHE and CLAHE Techniques. International Journal of Innovative Technology and Exploring Engineering. 2019;9(2):2442–2445. Available from: http://dx.doi.org/10.35940/ijitee.B7017.129219
  4. Karuppanagounder S, Palanisamy K. Medical image contrast enhancement based on gamma correction. 2011;3:15–18. Available from: https://www.researchgate.net/publication/265352419_Medical_Image_Contrast_Enhancement_based_on_Gamma_Correction
  5. Sahnoun M, Kallel F, Dammak M, Mhiri C, Mahfoudh KB, Hamida AB. A comparative study of MRI contrast enhancement techniques based on Traditional Gamma Correction and Adaptive Gamma Correction: Case of multiple sclerosis pathology. 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). 2018. Available from: http://dx.doi.org/10.1109/ATSIP.2018.8364467
  6. Kumar R, Bhandari AK. Spatial mutual information based detail preserving magnetic resonance image enhancement. Computers in Biology and Medicine. 2022;146:105644. Available from: http://dx.doi.org/10.1016/j.compbiomed.2022.105644
  7. Arifin AZ, Syuhada F, Ni'mah AT, Suryaningrum DA, Indraswari R, Navastara DA. Teeth Segmentation Using Gamma Adjustment and Transition Region Filter Based on Wavelet Method. 2019 Fourth International Conference on Informatics and Computing (ICIC). 2019. Available from: http://dx.doi.org/10.1109/ICIC47613.2019.8985725
  8. Lakshmi AV, Satynarayana V, Mohanaiah DP. MRI Brain Image Enhancement Using an Improved Contrast Enhancement Method. Revista Gestão Inovação e Tecnologias. 2021;11(2):607–615. Available from: http://dx.doi.org/10.47059/revistageintec.v11i2.1697
  9. Chen C, Raymond C, Speier W, Jin X, Cloughesy TF, Enzmann DF, et al. Synthesizing MR Image Contrast Enhancement Using 3D High-Resolution ConvNets. IEEE Transactions on Biomedical Engineering. 2023;70(2):401–412. Available from: http://dx.doi.org/10.1109/tbme.2022.3192309
  10. Patel P, Cnn-Sice. CNN-SICE Learner Based Image Contrast Enhancement. International Journal of Applied Science & Engineering. 2020;8(1). Available from: http://dx.doi.org/10.30954/2322-0465.1.2020.6
  11. Sarkar K, Halder TK, Mandal A. Adaptive power-law and cdf based geometric transformation for low contrast image enhancement. Multimedia Tools and Applications. 2021;80(4):6329–6353.
  12. KC, B V, K S, J F, J K, P K, et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [Internet], 1045–57. Springer Science and Business Media LLC. 2013. Available from: http://dx.doi.org/10.1007/s10278-013-9622-7
  13. DSM, THW, Parker J, Csernansky JG, Morris JC, Buckner RL. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults. Journal Journal of Cognitive Neuroscience. 2007;19(9):1498 – 1507. Available from: https://doi.org/10.1162/jocn.2007.19.9.1498
  14. Hssayeni MD, Croock MS, Salman AD, Al-Khafaji HF, Yahya ZA, Ghoraani B. Intracranial Hemorrhage Segmentation Using a Deep Convolutional Model. Data. 2020;5(1):14.
  15. Sharma R, Orton T. Brain metastases. Radiopaedia.org. Available from: http://dx.doi.org/10.53347/rid-4924
  16. Mutlag WK, Ali SK, Aydam ZM, Taher BH. Feature Extraction Methods: A Review. Journal of Physics: Conference Series. 2020;1591(1):012028. Available from: http://dx.doi.org/10.1088/1742-6596/1591/1/012028


© 2023 Halder et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.