• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 36, Pages: 2806-2814

Original Article

Characterization of the Complete Chloroplast Genome Sequence of Juniperus polycarpos K. Koch (Cupressaceae), from Ziarat, Pakistan

Received Date:08 February 2021, Accepted Date:11 June 2021, Published Date:11 February 2021


Objectives: To broaden the genetic information base of Juniperus and resolve phylogeny of Juniperus polycarpos through sequencing and characterization of its chloroplast genome. Methods: The chloroplast (cp) genome of J. polycarpos was sequenced and assembled using the Next-Generation Sequencing pairedend reads platform of BGISEQ-500 and annotated using CpGAVAS. The phylogenetic analysis was performed in MEGA7. Findings: Here, we report the complete cp genome sequence of J. polycarpos. The cp genome size is 127,825 bp with a typical circular structure and lack canonical inverted repeats having a total of 119 genes comprised of 82 protein-coding genes, 33 tRNA genes and four rRNA genes. The cp genome encodes 105 single copy genes and five duplicated genes (ndhK, ccsA, rps12, trnE-TTC and trnQ-TTG), and one tetraplicated gene(trnM-CAT). In these genes, 9 genes (rpl2, ycf2, trnA-TGC, trnETTC,rpoC, rpoB, ndhB, ndhA and atpF) harboring a single intron, three genes (accD, rrn23s and ycf3) having two introns and one gene (ycf1) harboring three introns. The overall GC content of J. polycarpos chloroplast DNA was 35%. Phylogenetic analysis among 14 species of order Coniferales based on cp genomes indicated a close relationship between J. polycarpos, J. cedrus and J. communis. Novelty and application: This is the first report on the cp genome of J. polycarpos. The current study is expected to add to the already available genomic resources needed for more comprehensive population genetics studies and resolving phylogenetic relationships of order Coniferales. Besides, it will provide baseline data for future research on Juniperus of Pakistan in particular.

Keywords: BGISeq-500; Cloroplast Genome; Persian Juniper; Phylogeny


  1. Sheikh M. Afforestration in Juniper forests of Ziarat, Balochistan. Pak J For. 1985;p. 46.
  2. Rafi M. Vegetation types of Baluchistan province. (pp. 116) Lahore Pakistan. Pak Govt Printing Press Punjab. 1965.
  3. Anwar M, Jasra AW, Sultani MI. Conservation and Sustainable Use of Biodiversity in Pakistan- A Review. Pakistan Agriculture. 2005;1(1):56–65.
  4. Ahani H, Jalilvand H, Nasr SMH, Kouhbanani HS, Ghazi MR, Mohammadzadeh H. Reproduction of juniper (Juniperus polycarpos) in Khorasan Razavi, Iran. Forest Science and Practice. 2013;15(3):231–237. Available from: https://dx.doi.org/10.1007/s11632-013-0307-6
  5. Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty:de novoassembly of organelle genomes from whole genome data. Nucleic Acids Research. 2016;45(4):e18. Available from: https://dx.doi.org/10.1093/nar/gkw955
  6. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987;4(4):406–431. Available from: https://www.cabdirect.org/cabdirect/abstract/20013005316
  7. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. 2016;33(7):1870–1874. Available from: https://dx.doi.org/10.1093/molbev/msw054
  8. Kondo T, Tsumura Y, Kawahara T, Okamura M. Paternal Inheritance of Chloroplast and Mitochondrial DNA in Interspecific Hybrids of Chamaecyparis spp. Japanese Journal of Breeding. 1998;48(2):177–179. Available from: https://dx.doi.org/10.1270/jsbbs1951.48.177
  9. Chen J, Tauer C, Huang Y. Paternal chloroplast inheritance patterns in pine hybrids detected with trnL–trnF intergenic region polymorphism. Theoretical and Applied Genetics. 2002;104(8):1307–1311. Available from: https://dx.doi.org/10.1007/s00122-002-0893-5
  10. Wakasugi T, Hirose T, Horihata M, Tsudzuki T, Kossel H, Sugiura M. Creation of a novel protein-coding region at the RNA level in black pine chloroplasts: the pattern of RNA editing in the gymnosperm chloroplast is different from that in angiosperms. Proceedings of the National Academy of Sciences. 1996;93(16):8766–8770. Available from: https://dx.doi.org/10.1073/pnas.93.16.8766
  11. Eguiluz M, Rodrigues NF, Guzman F, Yuyama P, Margis R. The chloroplast genome sequence from Eugenia uniflora, a Myrtaceae from Neotropics. Plant Systematics and Evolution. 2017;303(9):1199–1212. Available from: https://dx.doi.org/10.1007/s00606-017-1431-x
  12. Zhou T, Chen C, Wei Y, Chang Y, Bai G, Li Z, et al. Comparative Transcriptome and Chloroplast Genome Analyses of Two Related Dipteronia Species. Frontiers in Plant Science. 2016;7(1512). Available from: https://dx.doi.org/10.3389/fpls.2016.01512
  13. Zhou T, Zhao J, Chen C, Meng X, Zhao G. Characterization of the complete chloroplast genome sequence of Primula veris (Ericales: Primulaceae) Conservation Genetics Resources. 2016;8(4):455–458. Available from: https://dx.doi.org/10.1007/s12686-016-0595-y
  14. Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017;18(1):176. Available from: https://dx.doi.org/10.1186/s12864-017-3555-3
  15. Guo Q, Bianba D, Zheng W. Characterization of the complete chloroplast genome of Juniperus cedrus (Cupressaceae) Mitochondrial DNA Part A. 2016;27(6):4355–4356. Available from: https://dx.doi.org/10.3109/19401736.2015.1089498
  16. Song X, Li J, Tso S, Xie S, Li L, Mao Q, et al. Characterization of the complete chloroplast genome of Juniperus recurva (Cupressaceae), the Dropping Juniper from the Himalaya. Mitochondrial DNA Part B. 2019;4(1):1219–1220. Available from: https://dx.doi.org/10.1080/23802359.2019.1591194
  17. Tso S, Li J, Xie S, Miao J, Hu Q, Mao K. Characterization of the complete chloroplast genome of Juniperus microsperma (Cupressaceae), a rare endemic from the Qinghai-Tibet Plateau. Conservation Genetics Resources. 2019;11(3):325–328. Available from: https://dx.doi.org/10.1007/s12686-018-1027-y
  18. Palmer JD, Osorio B, Thompson WF. Evolutionary significance of inversions in legume chloroplast DNAs. Current Genetics. 1988;14(1):65–74. Available from: https://dx.doi.org/10.1007/bf00405856
  19. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences. 2010;107(10):4623–4628. Available from: https://dx.doi.org/10.1073/pnas.0907801107
  20. Wu F, Li M, Liao B, Shi X, Xu Y. DNA Barcoding Analysis and Phylogenetic Relation of Mangroves in Guangdong Province, China. Forests. 2019;10(1):56. Available from: https://dx.doi.org/10.3390/f10010056
  21. Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nature Genetics. 1999;21(1):108–110. Available from: https://dx.doi.org/10.1038/5052
  22. Nishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, et al. Chloroplast Phylogeny Indicates that Bryophytes Are Monophyletic. Molecular Biology and Evolution. 2004;21(10):1813–1819. Available from: https://dx.doi.org/10.1093/molbev/msh203
  23. Zhang ZL, Ma LY, Yao H, Yang X, Luo JH, Gong X. The complete chloroplast genome of Cupressus chengiana. Conservation genetics resources. 2017;9:347–356. Available from: https://doi.org/10.1007/s12686-016-0675-z


© 2021 Irfan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.