• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 46, Pages: 2555-2561

Original Article

Classification of Different Medical Images Using Neural Network Approach

Received Date:12 August 2022, Accepted Date:21 September 2022, Published Date:14 December 2022


Objectives: This work aims to design model for classification and selection of medical images by using the Convolution Neural Network technique with higher accuracy. Methods: Classification of the digital images into relevant categories like X-ray, CT, MRI is implemented using convolution neural network. At the initial stage total 7560 different medical images are given as input. These images are applied to the classifier. These images are passed through different levels of CNN. Findings: This method identifies medical images and separates into different categories i.e., X-ray, CT, MRI using convolution neural network. Accuracy calculated using this method is 99.01%. This method gives better results as compared to other machine learning methods i.e. Support vector machines. Program is written in python language using Jupiter Notebook. Novelty: Total 7560 images of different category are given as input. Convolutional Neural network approach gives good accuracy of 99.01% as compared to other machine learning approaches.

Keywords: Deep learning; Confusion matrix; Machine learning; Computer Tomography (CT); Magnetic Resonance Imaging (MRI)


  1. Khatami A, Nazari A, Beheshti A, Nguyen TT, Nahavandi S, Zieba J. Convolutional Neural Network for Medical Image Classification using Wavelet Features. In: 2020 International Joint Conference on Neural Networks (IJCNN). (pp. 1-8) IEEE. 2020.
  2. Malhotra P, Gupta S, Koundal D, Zaguia A, Enbeyle W. Deep Neural Networks for Medical Image Segmentation. Journal of Healthcare Engineering. 2022;2022:1–15. Available from: https://doi.org/10.1155/2022/9580991
  3. Sharma R, Singh A. An Integrated Approach towards Efficient Image Classification Using Deep CNN with Transfer Learning and PCA. Advances in Technology Innovation. 2022;7(2):105–117. Available from: https://doi.org/10.46604/aiti.2022.8538
  4. Umer M, Ashraf I, Ullah S, Mehmood A, Choi GS. COVINet: a convolutional neural network approach for predicting COVID-19 from chest X-ray images. Journal of Ambient Intelligence and Humanized Computing. 2022;13(1):535–547. Available from: https://doi.org/10.1007/s12652-021-02917-3
  5. Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evolutionary Intelligence. 2022;15(1):1–22. Available from: https://doi.org/10.1007/s12065-020-00540-3
  6. RoxanaLuca A, Ursuleanu TF, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, et al. Impact of quality, type and volume of data used by deep learning models in the analysis of medical images. Informatics in Medicine Unlocked. 2022;29(100911). Available from: https://doi.org/10.1016/j.imu.2022.100911
  7. Puttagunta M, Ravi S. Medical image analysis based on deep learning approach. Multimedia Tools and Applications. 2021;80:24365–24398. Available from: https://doi.org/10.1007/s11042-021-10707-4
  8. Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T. Transfer learning for medical image classification: a literature review. BMC Medical Imaging. 2022;22(69). Available from: https://doi.org/10.1186/s12880-022-00793-7
  9. Anaya-Isaza A, Mera-Jiménez L, Zequera-Diaz M. An overview of deep learning in medical imaging. Informatics in Medicine Unlocked. 2021;26(100723). Available from: https://doi.org/10.1016/j.imu.2021.100723


© 2022 Ghodeswar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.